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Ordered field

Stochastic field

affects transport, since particles follow field lines



Applications

• Fusion:
can defeat confinement,
can  be used to control heat flow

• Astrophysics
cooling flows in galaxy clusters
(stochastic field affects heat conduction)



Consider torus with helical field

         Field lines nearly lie on circles
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magnetic surfaces

surfaces upon which B
lines reside

Ideally surfaces are
concentric tori,



Add a small perturbation in radial magnetic field
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Possible sources of perturbations:

instability

magnetic field error

deliberate additional field

How can a small perturbation have a large effect on the field
structure?



If k|| ~0 (resonance), then

small magnetic fluctuation --> large
field line excursion

<B>~B



add a perturbation (e.g., an instability)
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B

χ⊥ define coordinate ⊥
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Perturbation is constant
along B at one radius
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Field line equation
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Field lines without perturbations

reconnection

radius

k

perturbed
Br ≠ 0
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 r  = constant



Field lines with perturbations

reconnection

radius
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reconnection has occurred

K|| = 0
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Soft xray tomography maps magnetic surfaces



SXR images of magnetic surfaces

With one dominant
tearing instability

From a reversed field pinch experimet

(similar to a tokamak)



Can have multiple islands
Two modes (m1, n1) and (m2, n2) produce 2 islands,

At radii where                   and
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SXR tomography with 2 tearing modes



B

If magnetic islands overlap,
field lines wander stochastically
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Can also see island structure in a toroidal cut

toroidal
angle

          radius radius

If islands overlap                     stochasticity



From MHD computation for multiple tearing modes

(with experimental input)

radius

toroidal
angle



SXR tomography in plasma with
multiple tearing modes

no islands remaining



An example of intentional
stochasticity in a tokamak

Perturbations added by coils

Purpose: to make the edge
stochastic to spread the
heat flux to the walls



A consequence of magnetic stochasticisty:
enhanced transport



Simple estimate of transport

Particles follow stochastic, diffusing field lines

Define diffusion coefficient for the field lines
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Particle diffusion coefficient
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Measured energy diffusion coefficient
consistent with simple stochastic diffusion

radius

experiment
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inferred puncture plot



High energy electrons poorly confined

PPCD

standard

HXR flux

energy (keV)0     20   40    60   80   100  120 140

     energy (keV) 
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Roughly consistent with D ~ v



How to measure particle transport from stochastic fields?

for electrons, the radial particle flux, due to
streaming parallel to B is

      or
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How to measure particle transport from stochastic fields?

for electrons, the radial particle flux, due to
streaming parallel to B is
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Adding momentum and energy transport
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Edge measurements of energy flux
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Density change is  balanced by  particle transport
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Control of magnetic stochasticity



Technique:

reduce energy source for tearing instability
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Transport reduction by current profile control

From nonlinear MHD computation:
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Magnetic fluctuations reduced

toroidal mode number, n
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Electrons confined to energy > 100 keV

PPCD
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HXR flux
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HXR spectrum with reduced stochasticity

D approximately independent of v

Transport not dominated by magnetic fluctuations,

Possibly dominated by electrostatic fluctuations,
through               drifts
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temperature increases       energy diffusion decreases
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Compare with theoretical expression for diffusion coefficient
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Summary

• Stochasticity has large effect on transport

• Stochasticity is controllable

• A theory for transport in stochastic field is
not yet available




