

1856-14

2007 Summer College on Plasma Physics

30 July - 24 August, 2007

Magnetic Stochasticity: origin, consequences, control

S.C. Prager University of Wisconsin A n d Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas Madison, USA

Magnetic Stochasticity origin, consequences, control

S.C. Prager University of Wisconsin

And

Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas

Stochastic field

affects transport, since particles follow field lines

Applications

• Fusion:

can defeat confinement, can be used to control heat flow

• Astrophysics

cooling flows in galaxy clusters (stochastic field affects heat conduction)

Consider torus with helical field

$$\vec{B}(r) = \vec{B}_{\vartheta}(r) + \vec{B}_{\varphi}(r)$$

poloidal toroidal

Field lines nearly lie on circles

magnetic surfaces

surfaces upon which B lines reside

Ideally surfaces are concentric tori,

Add a small perturbation in radial magnetic field \tilde{B}_r with $\frac{\tilde{B}_r}{B} << 1$

Possible sources of perturbations:

instability magnetic field error deliberate additional field

How can a small perturbation have a large effect on the field structure?

If $k_{\parallel} \sim 0$ (resonance), then

small magnetic fluctuation --> large field line excursion

add a perturbation (e.g., an instability) $\vec{B} = \vec{B}(r) + \hat{r}\tilde{B}_r(r)\sin(m\vartheta - n\varphi)$ thus, $\vec{k} = \frac{m}{r}\hat{\vartheta} - \frac{n}{R}\hat{\varphi}$

consider region near

ear
$$k_{\parallel} = 0$$

or $\vec{k} \cdot \vec{B} = \frac{m}{r} B_{\vartheta} - \frac{n}{R} B_{\varphi} = 0$
 $q = \frac{m}{n}$ where $q = \frac{r B_{\varphi}}{R B_{\vartheta}}$

define coordinate $\perp \vec{B}, \hat{r}$ $\chi_{\perp} = m\vartheta - n\varphi$

$$\tilde{B}_r = \tilde{B}_r(r)\sin\chi_\perp$$

Perturbation is constant along B at one radius

Field line equation

$$\frac{dr}{B_r} = \frac{h_{\chi} d\chi_{\perp}}{B_{\perp}}$$

$$\frac{dr}{\tilde{B}_r \sin \chi_\perp} = \frac{h_\chi d\chi_\perp}{B'_\perp r}$$

$$\frac{rdr}{d\chi_{\perp}} = h_{\chi} \frac{\tilde{B}_r}{B'_{\perp}} \sin \chi_{\perp}$$

$$r = \pm \sqrt{\left(\frac{h_{\chi}}{4} \frac{\tilde{B}_{r}}{B'_{\perp}} \cos \chi_{\perp} + C\right)}$$

Field lines without perturbations

r = constant

 χ_{\perp}

Field lines with perturbations

 χ_{\perp}

reconnection has occurred

$$\tilde{B}_r \sim \sin(m\vartheta - n\varphi)$$

Soft xray tomography maps magnetic surfaces

SXR images of magnetic surfaces

With one dominant tearing instability

From a reversed field pinch experimet (similar to a tokamak)

Can have multiple islands

Two modes (m_1, n_1) and (m_2, n_2) produce 2 islands, At radii where $q(r) = \frac{m_1}{n_1}$ and $q(r) = \frac{m_2}{n_2}$

SXR tomography with 2 tearing modes

If magnetic islands overlap, field lines wander stochastically

Can also see island structure in a toroidal cut

From MHD computation for multiple tearing modes (with experimental input)

SXR tomography in plasma with multiple tearing modes

no islands remaining

An example of intentional stochasticity in a tokamak

Perturbations added by coils

Purpose: to make the edge stochastic to spread the heat flux to the walls

A consequence of magnetic stochasticisty: enhanced transport

Simple estimate of transport

Particles follow stochastic, diffusing field lines

Define diffusion coefficient for the field lines

 \sim magnetic $D_M = \frac{(\Delta r)^2}{\Lambda I}$ magnetic diffusion coefficien coefficient

let
$$\Delta r \sim \frac{\tilde{B}_r}{B} L_c$$
 where L_c is a correlation length $\Delta L \sim L_c$

 $\sqrt{2}$

$$D_M \approx L_c \left(\frac{\tilde{B}_r}{B}\right)$$

then,

Rechester-Rosenbluth

Particle diffusion coefficient

$$D \approx v_{th} D_M$$

Measured energy diffusion coefficient consistent with simple stochastic diffusion

Consistent with inferred puncture plot

Roughly consistent with D ~ v

How to measure particle transport from stochastic fields?

for electrons, the radial particle flux, due to streaming parallel to B is

$$\Gamma_{r} = \left\langle \vec{\Gamma}_{\parallel e} \bullet \hat{r} \right\rangle = \left\langle \Gamma_{\parallel e} \frac{\vec{B}}{B} \bullet \hat{r} \right\rangle = \frac{\left\langle \Gamma_{\parallel e} B_{r} \right\rangle}{\left\langle B \right\rangle}$$
or

$$\Gamma_{r} = \frac{\left\langle \tilde{\Gamma}_{\parallel e} \tilde{B}_{r} \right\rangle}{\left\langle B \right\rangle}$$

How to measure particle transport from stochastic fields?

for electrons, the radial particle flux, due to streaming parallel to B is

$$\Gamma_{r} = \left\langle \vec{\Gamma}_{\parallel e} \bullet \hat{r} \right\rangle = \left\langle \Gamma_{\parallel e} \frac{\vec{B}}{B} \bullet \hat{r} \right\rangle = \frac{\left\langle \Gamma_{\parallel e} B_{r} \right\rangle}{\left\langle B \right\rangle}$$

Oľ

$$\Gamma_{r} = \frac{\left\langle \tilde{\Gamma}_{\parallel e} \tilde{B}_{r} \right\rangle}{\left\langle B \right\rangle}$$
$$\Gamma_{e} = nv_{e} = \frac{j_{e}}{e}$$

writing

$$\Gamma_{r} = \frac{\left\langle \tilde{j}_{\parallel e} \tilde{B}_{r} \right\rangle}{e \left\langle B \right\rangle}$$

Adding momentum and energy transport

particle flux =
$$\frac{\left\langle \tilde{j}_{\parallel e} \tilde{B}_{r} \right\rangle}{e \langle B \rangle}$$

momentum flux =
$$\frac{\left\langle \tilde{p}_{\parallel e} \tilde{B}_{r} \right\rangle}{e \left\langle B \right\rangle}$$

energy flux =
$$\frac{\left\langle \tilde{Q}_{\parallel e} \tilde{B}_{r} \right\rangle}{e \left\langle B \right\rangle}$$

Edge measurements of energy flux

-50

50

0 r [cm] -1

⁶time [ms]

particle flux =
$$\frac{\left\langle \tilde{j}_{\parallel e} \tilde{B}_r \right\rangle}{e \langle B \rangle}$$

Measure convective part

$$\Gamma_r = V_{//,e} \frac{<\tilde{n}_e \tilde{b}_r >}{B}$$

Density change is balanced by particle transport

Control of magnetic stochasticity

Technique:

reduce energy source for tearing instability $\nabla \frac{j_{\rm II}}{R}$

by controlling the current density profile

Transport reduction by current profile control

From nonlinear MHD computation:

Adding edge current \Rightarrow reduces fluctuations and chaos

Sovinec

Experimental alteration of current density profile

Magnetic fluctuations reduced

toroidal mode number, n

Magnetic stochasticity reduced in experiment

radius

Electrons confined to energy > 100 keV

HXR spectrum with reduced stochasticity

D approximately independent of v

Transport not dominated by magnetic fluctuations,

Possibly dominated by electrostatic fluctuations, through $\tilde{E} \times B$ drifts

Compare with theoretical expression for diffusion coefficient

Summary

- Stochasticity has large effect on transport
- Stochasticity is controllable
- A theory for transport in stochastic field is not yet available