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Ordered field
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Stochastic field
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affects transport, since particles follow field lines



Applications

 Fusion:
can defeat confinement,
can be used to control heat flow

* Astrophysics
cooling flows in galaxy clusters
(stochastic field affects heat conduction)



Consider torus with helical field

R

B(r)= B, (r)+ B,(r)
H_/ H_/
poloidal toroidal

Field lines nearly lie on circles



magnetic surfaces

surfaces upon which B
lines reside

|deally surfaces are
concentric tori,



Add a small perturbation in radial magnetic field Br
B

with L << ]

B

Possible sources of perturbations:
instability
magnetic field error

deliberate additional field

How can a small perturbation have a large effect on the field
structure?



If k, ~0 (resonance), then

small magnetic fluctuation --> large
field line excursion

B <B>
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add a perturbation (e.g., an instability)
B(r) + 7 ( )sin(mvU — n)

thus, I_é ﬂ@“ —

n .
r R(p

consider region near k” =()
- = m

or keB=—

r

rB

" RB,



X1

define coordinate 1 B,7
X, =m0 -ng
Br = Br(r) SlnXJ_

Perturbation is constant
along B at one radius



Field line equation
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Field lines without perturbations

r = constant




Field lines with perturbations

reconnection has occurred
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magnetic island




Soft xray tomography maps magnetic surfaces
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SXR images of magnetic surfaces

With one dominant
tearing instability
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From a reversed field pinch experimet

(similar to a tokamak)



Can have multiple islands

Two modes (m,, n,) and (m,, n,) produce 2 islands,

m,

m
At radii where ¢(r)=—and q(r)=—
i n,



SXR tomography with 2 tearing modes

Z (m)
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If magnetic islands overlap,
field lines wander stochastically
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Can also see island structure in a toroidal cut
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From MHD computation for multiple tearing modes

(with experimental input)
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SXR tomography in plasma with
multiple tearing modes

Zm)

no islands remaining



divertar aoils

An example of intentional
stochasticity in a tokamak

% plasma edge

Perturbations added by coils

Purpose: to make the edge
stochastic to spread the
heat flux to the walls
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A consequence of magnetic stochasticisty:
enhanced transport



Simple estimate of transport

Particles follow stochastic, diffusing field lines

Define diffusion coefficient for the field lines

< AL >
2 magnetic
(Ar) diffusion

M AL coefficient



let Ar~—L.  wherel_is a correlation length

B
AL ~ L
then, i 2
Dy ~L| =

Particle diffusion coefficient

D=v, D,

Rechester-Rosenbluth



Measured energy diffusion coefficient
consistent with simple stochastic diffusion
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High energy electrons poorly confined
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Roughly consistent with D ~ v



How to measure particle transport from stochastic fields?

for electrons, the radial particle flux, due to
streaming parallel to B is

r,,=<fe-f>=<r

or

~ |




How to measure particle transport from stochastic fields?

for electrons, the radial particle flux, due to
streaming parallel to B is

or
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Adding momentum and energy transport

(e,

particle flux = e<B>
<]3I|6B>

momentum flux = e<B>
energy flux = <Q"8Br>

e(B)



Edge measurements of energy flux
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<.7|IeBr>

particle flux =

e(B)

Measure convective part




Density change is balanced by particle transport
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Control of magnetic stochasticity



Technique:

reduce energy source for tearing instability

v
B

by controlling the current density profile



Transport reduction by current profile control

From nonlinear MHD computation:

Adding edge current = reduces fluctuations and chaos
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Experimental alteration of current density profile
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Magnetic fluctuations reduced
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Electrons confined to energy > 100 keV
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HXR spectrum with reduced stochasticity

d

D approximately independent of v

d

Transport not dominated by magnetic fluctuations,

Possibly dominated by electrostatic fluctuations,
through FE x B drifts



temperature increases energy diffusion decreases
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Compare with theoretical expression for diffusion coefficient
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Summary

« Stochasticity has large effect on transport
« Stochasticity is controllable

* A theory for transport in stochastic field is
not yet available





