
SMR/1856-2

2007 Summer College on Plasma Physics

R. Fitzpatrick

30 July - 24 August, 2007

Inst. for Fusion Studies
University of Texas at Austin

U S A

Introduction to Magnetic Island Theory.
(Lecture II)



�

�

�

�

Introduction to Magnetic Island Theory a

Richard Fitzpatrick

Institute for Fusion Studies

University of Texas at Austin

Austin, TX, USA

aLectures based on work of R. Fitzpatrick, F.L. Waelbroeck, and F. Militello.



�

�

�

�

Lecture 2

1



�

�

�

�

Neoclassical Effects: Introduction

• So-called neoclassical effects a in magnetic confinement devices

arise from combination of essential toroidicity of such devices, and

extremely long mean-free-path of electrons and ions streaming

along field-lines, due to very low collisionality of hot fusion

plasmas.

aThe Theory of Toroidally Confined Plasmas, 2nd Rev. Edition, R.B. White

(World Scientific, 2006).
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Neoclassical Effects: Trapped and Passing Particles

passing orbit

trapped orbit

toroidal axis

magnetic mirroring

strong toroidal field weak toroidal field
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Neoclassical Effects: Bootstrap Current - I

• In toroidal plasma, friction between trapped and passing electrons

leads to appearance of non-inductive bootstrap current in Ohm’s

law: a

dΨ

dt
cosθ � [φ,ψ] + η [J(ψ) − Jboot],

where

Jboot = −1.46
√
εB−1

θ

∂P

∂r
.

Here, ε is inverse aspect-ratio, 1.46
√
ε is measure of fraction of

trapped-particles, and P is plasma pressure.

aM.N. Rosenbluth, R.D. Hazeltine, and F.L. Hinton, Phys. Fluids 15, 116 (1972).
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Neoclassical Effects: Bootstrap Current - II

• Pressure profile often flattened inside island separatrix.

• Bootstrap current consequently disappears inside separatrix.

• Absence of bootstrap current inside separatrix, and continued

presence outside, leads to destabilizing term in Rutherford island

equation: a

0.823

η

dW

dt
� ∆ ′−2.31

√
ε

(r P ′/B2
θ)

(W/4)

aR. Fitzpatrick, Phys. Plasmas 2, 825 (1995).
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Neoclassical Effects: Neoclassical Tearing Modes - I

• A neoclassical tearing mode (NTM) is an intrinsically stable

(∆ ′ < 0) tearing mode destabilized by bootstrap term.

• Bootstrap term in Rutherford equation relatively large, especially

at small island widths. Would expect plasma to be filled with

NTMs, and confinement to be wrecked.

• This is not observed to be case. Experimental evidence for

threshold island width above which NTMs grow, but below which

they decay.a

• Suggests presence of stabilizing term in Rutherford equation which

opposes destabilizing bootstrap term.

aO. Sauter, et al., Phys. Plasmas 4, 1654 (1997).
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Neoclassical Effects: Neoclassical Tearing Modes - II

• Most likely candidate for stabilizing term in Rutherford equation,

which provides NTM threshold mechanism, is well-known term

due to ion polarization current.a

• In order to investigate this term, must graduate to two-fluid

drift-MHD magnetic island theory.

aA.I. Smolyakov, Sov. J. Plasma Phys. 15, 667 (1989).
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Drift-MHD Theory: Introduction

• In drift-MHD approximation, analysis retains charged particle drift

velocities, in addition to �E× �B velocity.

• Essentially two-fluid theory of plasma.

• Characteristic length-scale, ρ, is ion Larmor radius calculated with

electron temperature.

• Characteristic velocity is diamagnetic velocity, V∗, where

ne �V∗ × �B = ∇P.

• Normalize all lengths to ρ, and all velocities to V∗.
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Drift-MHD Theory: Basic Assumptions

• Retain slab model, for sake of simplicity.

• Assume parallel electron heat transport sufficiently strong that

Te = Te(ψ).

• Assume Ti/Te = τ = constant, for sake of simplicity.
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Drift-MHD Theory: Basic Definitions

• Variables:

– ψ - magnetic flux-function.

– J - parallel current.

– φ - guiding-center (i.e., MHD) stream-function.

– U - parallel ion vorticity.

– n - electron number density (minus uniform background).

– Vz - parallel ion velocity.

• Parameters:

– α = (Ln/Ls)
2, where Ln is equilibrium density gradient

scale-length.

– η - resistivity. D - (perpendicular) particle diffusivity. µi/e -

(perpendicular) ion/electron viscosity.
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Drift-MHD Theory: Drift-MHD Equations - I

• Steady-state drift-MHD equations: a

ψ = −x2/2+ Ψ cosθ, U = ∇2φ,

0 = [φ− n,ψ] + η J,

0 = [φ,U] −
τ

2

{∇2[φ,n] + [U,n] + [∇2n,φ]
}

+[J, ψ] + µi∇4(φ+ τn) + µe ∇4(φ− n),

0 = [φ,n] + [Vz + J, ψ] +D∇2n,

0 = [φ,Vz] + α [n,ψ] + µi ∇2Vz.

aR.D. Hazeltine, M. Kotschenreuther, and P.J. Morrison, Phys. Fluids 28, 2466

(1985).
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Drift-MHD Theory: Drift-MHD Equations - II

• Symmetry: ψ, J, Vz even in x. φ, n, U odd in x.

• Boundary conditions as |x|/W → ∞:

– n → −(1+ τ)−1 x.

– φ → −V x.

– J, U, Vz → 0.

• Here, V is island phase-velocity in �E× �B frame.

• V = 1 corresponds to island propagating with electron fluid.

V = −τ corresponds to island propagating with ion fluid.

• Expect

1� α� η,D, µi, µe.
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Drift-MHD Theory: Electron Fluid

• Ohm’s law:

0 = [φ− n,ψ] + η J.

• Since η� 1, first term potentially much larger than second.

• To lowest order:

[φ− n,ψ] � 0.
• Follows that

n = φ+H(ψ) :

i.e., electron stream-function φe = φ− n is flux-surface function.

Electron fluid flow constrained to be around flux-surfaces.
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Drift-MHD Theory: Sound Waves

• Parallel flow equation:

0 = [φ,Vz] + α [n,ψ] + µi ∇2Vz.

• Highlighted term dominant provided

W � α−1/2 = Ls/Ln.

• If this is case, then to lowest order

n = n(ψ),

which implies n = 0 inside separatrix.

• So, if island sufficiently wide, sound-waves able to flatten density

profile inside island separatrix.

14



�

�

�

�

Drift-MHD Theory: Subsonic vs. Supersonic Islands

• Wide islands satisfying

W � Ls/Ln

termed subsonic islands. Expect such islands to exhibit flattened

density profile within separatrix. Subsonic islands strongly coupled

to both electron and ion fluids.

• Narrow islands satisfying

W � Ls/Ln

termed supersonic islands. No flattening of density profile within

separatrix. Supersonic islands strongly coupled to electron fluid,

but only weakly coupled to ion fluid.

15



�

�

�

�

Subsonic Islands: a Introduction

• To lowest order:

φ = φ(ψ), n = n(ψ).

• Follows that both electron stream-function, φe = φ− n, and ion

stream-function, φi = φ+ τn, are flux-surface functions. Both

electron and ion fluid flow constrained to follow flux-surfaces.

• Let

M(ψ) = dφ/dψ, L(ψ) = dn/dψ.

• Follows that

VE×B y = xM, Ve y = x (M− L), Vi y = x (M+ τ L).

aR. Fitzpatrick, F.L. Waelbroeck, Phys. Plasmas 12, 022307 (2005).
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Subsonic Islands: Density Flattening

• By symmetry, both M(ψ) and L(ψ) are odd functions of x.

Hence,

M(ψ) = L(ψ) = 0

inside separatrix: i.e., no electron/ion flow within separatrix in

island frame.

• Electron/ion fluids constrained to propagate with island inside

separatrix.

• Density profile flattened within separatrix.

17



�

�

�

�

Subsonic Islands: Analysis - I

• Density equation reduces to

0 � [Vz + J, ψ] +D∇2n.

• Vorticity equation reduces to

0 � [
−MU− (τ/2)(LU+M∇2n) + J, ψ

]
+µi ∇4(φ+ τn) + µe ∇4(φ− n).

• Flux-surface average both equations, recalling that 〈[A,ψ]〉 = 0.
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Subsonic Islands: Analysis - II

• Obtain

〈∇2n〉 � 0,
and

(µi + µe) 〈∇4φ〉 + (µi τ− µe) 〈∇4n〉 � 0.
• Solution outside separatrix:

M(ψ) = −
(µi τ− µe)

(µi + µe)
L(ψ) + F(ψ),

where

L(ψ) = −sgn(x) L0/〈x2〉,
and F(ψ) is previously obtained MHD profile:

F(ψ) = sgn(x) F0

∫ψ

−Ψ

dψ/〈x4〉
/ ∫

−∞
−Ψ

dψ/〈x4〉.
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Subsonic Islands: Velocity Profiles

• As |x|/W → ∞ then x L → L0 and x F → |x| F0.

• L(ψ) corresponds to localized velocity profile. F(ψ) corresponds to

non-localized profile. Require localized profile, so F0 = 0.

• Velocity profiles outside separatrix (using b.c. on n):

Vy i � +
µe

µi + µe

|x|

〈x2〉 ,

Vy E×B � −
(µi τ− µe)

(1+ τ) (µi + µe)

|x|

〈x2〉 ,

Vy e = −
µi

µi + µe

|x|

〈x2〉 .
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Subsonic Islands: Island Propagation

• As |x|/W → ∞ expect Vy E×B → VEB − V, where VEB is

unperturbed (i.e., no island) �E× �B velocity at rational surface (in

lab. frame), and V is island phase-velocity (in lab. frame).

• Hence

V = VEB +
(µi τ− µe)

(1+ τ) (µi + µe)
.

• But unperturbed ion/electron fluid velocities (in lab. frame):

Vi = VEB + τ/(1+ τ), Ve = VEB − 1/(1+ τ).

• Hence

V =
µi

µi + µe

Vi +
µe

µi + µe

Ve.

So, island phase-velocity is viscosity weighted average of

unperturbed ion/electron fluid velocities.
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Subsonic Islands: Polarization Term - I

• Vorticity equation yields

Jc � 1

2

(
x2 −

〈x2〉
〈1〉

)
d[M (M+ τ L)]

dψ
+ I(ψ)

outside separatrix, where Jc is part of J with cosθ symmetry.

• As before, flux-surface average of Ohm’s law yields:

〈Jc〉 = I(ψ)〈1〉 = η−1dΨ

dt
〈cosθ〉.

• Hence

Jc � 1

2

(
x2 −

〈x2〉
〈1〉

)
d[M (M+ τ L)]

dψ
+ η−1dΨ

dt

〈cosθ〉
〈1〉 .
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Subsonic Islands: Polarization Term - II

• Asymptotic matching between inner and outer regions yields:

∆ ′ Ψ = −4

∫
−∞
+Ψ

〈Jc cosθ〉dψ.

• Evaluating flux-surface integrals, making use of previous solutions

for M and L, obtain modified Rutherford equation:

0.823

η

dW

dt
� ∆ ′ + 1.38β

(V − VEB) (V − Vi)

(W/4)3
.

• New term is due to polarization current associated with ion fluid

flow around curved island flux-surfaces (in island frame).

Obviously, new term is zero if island propagates with ion fluid:

i.e., V = Vi.
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Subsonic Islands: Summary

• Results limited to large islands: i.e., large enough for sound waves

to flatten density profile.

• Island propagates at (perpendicular) viscosity weighted average of

unperturbed (no island) ion and electron fluid velocities.

• Polarization term in Rutherford equation is stabilizing provided ion

(perpendicular) viscosity greatly exceeds electron (perpendicular)

viscosity (which is what we expect), and destabilizing otherwise.
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