The Abdus Sa’am Educational, Scientificand -
International Centre for Theoretical Physics

Cultural Organization *

¢ \
(&)
NV

-1

Atomic Energy Agency

1856-18

2007 Summer College on Plasma Physics

30 July - 24 August, 2007

Numerical methods and simulations. Lecture 2: Simulation of ordinary
differential equations.

B. Eliasson

Institut fur Theoretische Physik IV
Ruhr-Universitaet Bochum
Bochum, Germany

Strada Costiera | |, 34014 Trieste, Italy - Tel. +39 040 2240 | | I; Fax +39 040 224 163 - sci_info@ictp.it, www.ictp.it

Summer College on Plasma Physics
ICTP

Trieste, Italy

30 July — 24 August 2007

Course: Numerical methods and simulations

Tutor: Bengt Eliasson
E-mail: bengt@tp4.rub.de
Internet address: www.tp4.rub.de/~bengt

Lecture 2: Simulation of ordinary differential equations

e Will continue to write programs in Matlab
e Learn how to write loops and functions
e Simulate ordinary differential equations

— Lotka-Volterra equation: A model for predator-prey systems (for
example foxes and rabits).

Assignment: Modify the program to solve the Lorentz system, which
is used to study chaos (the Lorentz attractor).

To solve a differential equation numerically in time, we discretize the time
so that the solution is only defined at discrete points in time, separated
by the timestep At, Then we find the solution at later times by using
the solution at earlier times.

The Runge-Kutta algorithm:

To solve the time-dependent equation

dx(t)
O B0, 0

with the initial condition x = xo, where F is a function (which may be
vector-valued) of x and ¢, we use the Runge-Kutta algorithm

(1) F; — F(x,1)
(2) Fy — F(x + AtR, /2,1 + At/2)

(3) F3 — F(x + AtRy/2,t + At/2)

(4) Fy — F(x + AtRs, t + At)

(5) x — x + (AL/6)(Ry + 2Rs + 2R + Ry)

This gives the solution x at time ¢+ At. The steps (1)—(5) are repeated
with the new values of x until we have reached the end of the simulation.

Example: Write a program that solves the Lotka-Volterra equation

dx

priak bry (2)
dy
priial’ + dxy (3)

with the initial conditions z(0) = y(0) = 2, and where the constants
are a = 1.5, b=1, c= 3 and d = 1. Plot the result. Here

S

)
and
| az — bxy
pon =])

We now write the main program "main.m” for our simulation. Select
from the Matlab menu File / New / M-file, then from the menu of the
new window, choose File / Save as, and Filename: main.m

We now write the program in the file:

% Main program main.m
clear Y%Clear all variables

Nt=1000; % The number of time steps

x=2; %Initial values
y=2; z=2;

t=0; % Start at time t=0

dt=0.02; % The time step

% Create vectors to store results
xvec=zeros(1,Nt);
yvec=zeros(1,Nt);
tvec=zeros(1,Nt);

% Store initial valuse
tvec(1)=0;
xvec(1)=x;
yvec(1)=y;

for j=1:Nt
% Call the Runge-Kutta routine.
[x,y]=RungeKutta(x,y,t,dt);
t=t+dt;

%Store the results
tvec(j+1)=t;
xvec(j+1)=x;
yvec(j+1)=y;

end

%Plot the results
subplot(2,1,1) plot(tvec,xvec)
subplot(2,1,2) plot(tvec,yvec)

Then choose from the menu File / Save.

Now we write the Runge-Kutta subroutine: From the Matlab menu,
choose File / New / M-file, then choose from the menu of the new file
File / Save as, and Filename: RungeKutta.m

In the new file, we write

% Runge-Kutta alogrithm, RungeKutta.m
function [x,y]=RungeKutta(x,y,t,dt)

[F1x,F1y]=F(x,y,t);

[F2x,F2y]=F (x+0.5%dt*R1x,y+0.5*xdt*R1y,t+0.5%dt) ;
[F3x,F3y]=F (x+0.5%dt*R2x,y+0.5*xdt*R2y,t+0.5*dt) ;
[F4x,F4y]=F (x+dt*R3x,y+dt*R3y,t+dt) ;

x=x+dt/6* (F1x+2*F2x+2*F3x+F4x) ;
y=y+dt/6* (F1y+2*F2y+2*F3y+F4y) ;

Choose File / Save.

Finally, we write the function that defines the right-hand side of the
differential equation. From the Matlab menu, choose File / New /
M-file, and then File / Save as and Filename: F.m

In the new file, we write

% The right-hand side of the differential equation, F.m
function [Fx,Fy]l=F(x,y,t)

hLotka-Volterra equation

o

.5;

1
1
3;
1

Q-(RO"

I

Fx=a*x-b*xx*y;
Fy=-c*xy+d*xx*y;

Choose File / Save.

We now run the program. In the Matlab window, type in main (Enter).

The result is

5
4.5
4
35
3
25
2

15 ! .
0

10 12 14 16 18 20

0.5 ! !
0

10 12 14 16 18 20

The upper plot (z) shows the prey (cheeps or rabbits), and the lower
plot (y) shows the predators (wolves or foxes) that catch the prey.
When there are many rabbits, the foxes also increase, and when the
number of rabbits decrease the number of foxes also decrease ...

Assignment: Modify the program so that it solves the Lorentz system

of equations:

dz

S 10(y —

" 10y - x) ©)
d

d—?:%x—y—xz (7)
dz 8

a3t ®)

with the initial conditions z = y = 2z = 2. Solve the system from ¢ = 0
to t = 80 and plot z, y and z in three subpanels of the same figure.

The result is

20

0 R
0]
-10]
-20 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 B
40
20f R
0]
20k]
-40 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 %
60
401 R
20 R
0 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90

We see that the solution exhibits a very irregular and chaotic behavior.
The Lorentz system has been studied extensively both numerically and
theoretically. The solution is attracted to a fractal set in x, y, z space,
called a "strange attractor”.

