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Abstract:

This paper presents some aspects of interaction of superstrong high-frequency 

electromagnetic waves with strongly magnetized plasmas. The case when the photon-

photon interaction dominates the photon- plasma particle interaction is considered.

Strictly speaking the photon and photon bunch interaction leads to the self-modulation of 

the photon gas.. Assuming that the density of the plasma does not change, the dispersion 

relation, which includes relativistic self-modulation is investigated. The existence of 

longitudinal photons in a strong magnetic field has the well-known Bogoliubov type 

energy spectrum. The stability of the photon flow is investigated and an expression for 

Landau-damping of the photons is obtained. Finally, it has been shown that the 

interaction of even a very strong electromagnetic radiation with a plasma does not always 

lead to instability, but causes only a change in plasma properties, whereby the plasma 

remains stable. 

I. Introduction

Recently it has been shown in Ref.[1-8] that the interaction of a relativistic intense 

Electromagnetic (EM) radiation with plasmas leads to the initially narrow spectrum to 

eventually broaden due to different kinds of instabilities. Hence, the natural state of 

strong radiation of the EM field has a broad spectrum, which allows us to treat such 
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strong radiations, as a dense photon gas. In a recent review by Marklud and Shukla 

[Ref.9], non linear collective effects were considered in detail. This analysis involved the 

Heisenberg-Euler Langrangian, which describes strong field vacuum effects. 

    Since photons in plasma acquire an effective rest mass, authors in Ref.[10-14] 

considered black body radiation by taking relativistic effects into account. In the last 

couple of years a remarkable new aspect of a dense photon gas has been explored in 

Ref.[15-16 ] in the absence of the magnetic field where Bose – Einstein condensation 

(BEC) and an intermediate state of the photon gas were investigated. In these papers the 

existence of “Compton” type scattering in a non linear photon gas was established for the 

case when the plasma density remains constant, and this may be considered a new 

physical phenomena. Further, the generation of longitudinal photons (photoniko) was 

demonstrated and a Bogoliubov type energy spectrum was derived for them. In the above 

papers the intensity of radiation that was considered was such that the photon-photon 

interactions were more likely than the photon – plasma particle interactions. In Ref [16] a 

new version of the Pauli equation or the master equation for a photon gas was derived 

from a general kinetic equation for the electromagnetic spectral intensity [see for example 

in Ref. 1- 7].   The kinetic equations for plasmons and photons in Vlasov’s approximation 

were considered in Ref.17 for the case of broad spectrum Langmuir plasmons. A more 

general kinetic equation was derived and the ion- sound wave excitation was investigated 

in Ref.[18]. 

It is well known, that the role of relativistic effects increases when a strong magnetic field 

is present in plasma. This occurs when the cyclotron frequency 
cm

eB
c

0

0

γ
=Ω  is of the 
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order of the photons frequencyω , i.e., cΩ  = 1.76×10
7

γ
0

B ω~ , where 0m  is the 

particle rest mass and 
2

1

2

2

1

−

−=
c

vγ is the relativistic factor. The study of the problem of 

the influence of a strong or super strong magnetic field on the dynamics of relativistic 

intense EM radiation is immensely important. Ginzburg (Ref.[19]) was the first to 

consider this and showed that the collapse of a star must be accompanied by the 

generation of a super strong magnetic field. We would like to point out that there is a 

variety of well known effects of strong magnetic fields in plasmas and that the 

astrophysical data suggests that the surface magnetic field of a neutron star is 

GB 1312 1010~ −  while the internal field can reach values of GB 1510~  or even higher 

(as explained in Ref.[20, 21]). 

Recently, in Ref.[22]  a new mechanism for the generation of a magnetic field by super 

strong radiation was proposed, and under this proposition the magnetic field could attain 

values of GB 97 1010~ − . In Ref.[23] a novel kinetic equation for the spectral function 

of high frequency relativistic intense electromagnetic waves in the presence of a strong 

magnetic field was derived. In the same paper a dispersion relation for relativistic self – 

modulation of the photon gas with arbitrary amplitude of the EM waves was obtained.  

  In the present paper, we consider the interaction of relativistic intense incoherent EM 

waves (photon gas) with plasmas in the presence of a strong magnetic field. We first 

obtain the dispersion relation and show that there exist new longitudinal photons in a 

strong magnetic field, which we name as longitudinal magnetic photons. 



4

In the limit of a vanishing magnetic field we obtain the expression of the Bogoliubov 

type of spectrum (see Ref.16]). These waves are fully relativistic and have no analog in 

the non-relativistic limit. 

   In the present paper we also show that the interaction of relativistic intense EM waves 

with plasmas does not always lead to instabilities. There exists a condition under which 

the radiation changes properties of the plasma and the plasma remains stable. This in turn 

leads to the spatial dispersion of the longitudinal waves, even when the temperature is 

neglected, (or 2

0 cmT << ). Thus we have shown that the spectrum of these longitudinal 

plasma waves is quite different from the case when there is no radiation.  

II. Kinetic Equation for the photon gas.

 In Ref.[23]circularly polarized relativistic intense EM waves propagating in the direction 

of a constant magnetic field 0B  were considered. There it was assumed that all quantities 

have both fast and slow temporal and spatial scales. By using fully relativistic Maxwell 

equation for the vector potential 

p
mc

en

t

A

c
A

γ
π41

2

2

2

2 =
∂
∂−∇ (1)

under the action of an intense HF field, only the electrons contribute to the current 

density i.e. γ/penJ −=  . Here p  is the momentum due to rapidly varying EM fields 

and simple calculation of p  follows from the equation of motion to yield  

( ) ( ) ( ) [ ])-.(exp
22 23

ωτ
ωωγ

ω
ωωγ

ω
ππ

ωγ
xki

t

A
iA

kdd

c

e
p

c

c

c
∂
∂

−
−

−
−= (2)
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 We shall consider Eq.(1) at two distinct points and instants of time. Following the 

procedure adopted in Ref.[23], we derive an equation for the dimensionless  correlation 

function ( ) ),;,(),(),(
2211221122

0

2

trtrtrAtrA
cm

e Π>=< . For this we use Eq.(1 )for 

),(
11

trA  and ),(
22

trA multiply by the first by ),(
22

trA  and the latter by 

),(
11

trA respectively and then subtract the resulting two equations  from each other, and 

further by  introducing the following  new variables. 

21212121
),(

2

1
),(

2

1
rrrrr,ttttt −=+=−=+= ξ

We obtain the Eq. (7) of Ref.[23] for )
2

,
2

;
2

,
2

(
τξτξ −−++Π trtr

where
( ) ( )

( ) 22

0

2 ,,

cm

trAtrAe ><=∏
∗

.

 Performing a Fourier transformation of ),,,( τξ trΠ  on the variables ( τξ , ) we 

can introduce the dimensionless spectral function Q or Wigner representation 

( ) ( )
( ) [ ] )

2
,

2
;

2
,

2
().(exp

,,,
,,,

22

0

2
2

τξτξξωτξτ
ω

ω ++−−Π−== trtrkidd
cm

trkAe
trkQ

           (3) 

Taking the double Fourier transformation of Eq.(7) from Ref.[23], and assuming that all 

the derivatives of the density )
2

,
2

(
τξ ±±=± txnn  and the relativistic factor
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)
2

,
2

(
τξγγ −±=± tx exist we then expand these quantities around x and t to obtain an 

evolution equation for the spectral function ( ),,, trkQ ω  in the form 

( )
( )

( ) ( ) Q
n

n

tl
Qkc

t

Q

n

n e

ce

l

k
l

l

l

p

e

ce

pece

−∂
∂

∂
∂−∇∇

+
−=∇+

∂
∂

−
+

+∞

=
+

0

12

0
12

22

0

2

2

.
2!12

1
).(

2 ωγω
ω

ω
ω

ωγω
ωω

ω

                               (4) 

here
0

n  is the equilibrium plasma density, 
0

0

cm

eB
ce =ω  and

em

en

0

2

02

pe

4πω = .

Note that in this equation, the time and space derivatives in the brackets do not act on Q. 

Further these authors of Ref.[23] derived the ponderomotive force using Eq.(2) which is 

the equation for the momentum of electrons and is given by  

( ) ( ) ( )22 23

2

0 ∂
∂

−
−

−
∇−=

t

QkQkdd
cmF

ce

c

ce

p

ωωγ
ω

ωωγ
ω

ππ
ω

(5)

Here the relativistic factor γ  can be expressed in terms of the spectral function Q and is 

given by 

( ) ( ) 2

2

3

22

22
1

ce

Qkdd

ωωγ
ω

ππ
ωγγ

−
+= (6)

III. Self – Modulation of waves in a strong magnetic field.

In Ref.[16] it was shown that if the modulation frequency of waves is much less than the 

Langmuir frequency of electrons
pe

ω , then the photon flow can no longer excite 
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Langmuir waves and the contribution of perturbation of the electron density is small in 

comparison with the perturbation of the photon density. In this section, therefore, we 

shall suppose that the density of the plasma particles remains constant. 

   It is important to emphasize that in Eq. (4) there are two forces, having a distinct 

nature, which can change the spectral function Q of photons. One force appears due to 

the redistribution of electrons in space 
o

e

n

n
∇  and time 

o

e

n

n

t∂
∂

, and the other due to 

variations of the shape of the wave packet and is proportional to 
ceωωγ −

∇ 1
and

cet ωωγ −∂
∂ 1

. We further note that the latter force takes into account the variation of the 

relativistic factorγ . In order to consider self- modulation of EM waves, we linearize 

Eqs. (4) and (5) with respect to perturbations and seek plane wave solutions proportional 

to ).(exp trqi Ω− and consider the range of frequencies for which the inequality 

γ
ωω ce~<<Ω  holds, and as stated earlier the density perturbation enδ  is zero, which 

means that only the perturbation of the wave packet is considered. With these 

assumptions we obtain the dispersion relation for the self – modulation of the photon gas 

in magnetized plasma, which is given by    

( )
( )

0

2
.

2
.

2
.

2
.1

2222

22224

0

0

4

0

0

2

=

Γ
−−Ω−

Γ
+−Ω−

Γ
−−Ω

−

Γ
+−Ω−Γ

−

cq
vq

cq
vqi

cq
vq

P

cq
vq

PkQkd

g

gg

gg
cepe

δδπ

ωωγ
ω

γω

          (7) 
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( )
( ) ( )2

0

2

3

0

0

2

0
2

1
,1

where

ce

pece

ce

ce

kQkd
g

ωωγ
ωω

ω
ωωγ

ωω
−

+=Γ
−

+=     and
Γ

=
2ck

g
v

Here we have used the well-known relation  

)(
1

lim
0

xi
x

P

ix
δπ

εε
−=

+→

where P  denotes the prescription that at the singularity ( 0=x ), the principal value is to 

be taken. In Eq. (7), )(0 kQ  is the spectral function in the equilibrium state and is 

represented by

( ) ( )
( )

( )−−=
2

2
0

2/32

0

0
2

exp
2 kk

kkk
kQ

σσπ
α

                                 (8) 

This is a spectral Gaussian distribution, with the average wave vector 0k  and spectral 

width σ k . Further assuming that k  = 0k + χ  and <<, χq 0k , and then upon 

integration of Eq.(7), we obtain the dispersion relation in the form 

( )
( )

( )
( ) ( )

( )
( )

( )
( ) ( )

0
2

)(.3
exp)(.

11

2
3

)(.

1
1

22

2

0

02

0

2

0

0

2

00

2

2

42222

0

22

2

0

2

0

0

2

0

2

00

2

=
−Ω

−−Ω
−
−

Γ
−

−−−Ω−
−

Γ
+

s

g

g

c

pe

sk

sgc

pe

Uq

kvq
kvq

kgUq
i

qUqkvq

cq

k

k

g

ωωγ
γω

γ
ω

σ
π

δωωγ
γω

γ
ω

                                            (9) 

where
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( )
( )

2

0

2

0

0

0

2 1
1,

2 γ
γ

ωωγ
ωδ −

−
+=

Γ
=

ce

ceg
c

( )2

0

0

2

02

0

2

0 )(
)(

1

ce

k
k

ωωγ
ωα

γ
γ

−
=

−
                          (10) 

The velocity sU  = 3 c
ck

Γ
σ

 can be treated as the magnetic sound velocity (or 

magnetized sound velocity) of the longitudinal photons.  

   Further by neglecting the imaginary term in Eq.(9), we investigate the dispersion 

relation in the hydrodynamic limit, which  then has the form  

( ) [ ]. 22222
2

qVUqvq
Esg δ+−=−Ω (11)

where

( )
( )

1
2

0

22

22

0

2

0

0

2

2

ce

L

E

c

g
V

ωωγ
ω

γ
γω

−Γ
−=          (12)

We note that 0g  can be positive when 
γ

ωω ce>  and negative in the opposite case. In the 

latter case, the longitudinal waves are always stable i.e., for the case 
22

EE VV −=  we 

obtain the Bogoliubov type of spectrum for the longitudinal photons in the magnetized 

plasma (as noted earlier, that the spectrum without the magnetic field or in an isotropic 

plasma was obtained in Ref.[16]. ) 
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If
2

EV is positive and  2222
qUV sE +>  or 

22

2

2
sE UV

c
q −Γ<   then Eq. (9) has an 

unstable solution. Taking ''' Ω+Ω=Ω i , where

gvq .=Ω′     (13)

we obtain the growth rate for the unstable mode given by 

2222'' qUVq sE α−−=Ω   (14) 

From Eqs.(13) and (14) follows that the emission of magneto – longitudinal photons 

takes place due to a bunch of photons inside a resonance cone (
gvq

cos
'Ω=θ ) . 

If
2

EV is negative or 
2

EV < 222
qU s α+  we have a stable Bogoliubov type of spectrum 

with damping, which follows from Eq.(9) and (11) for real Ω  in a co-moving frame of 

reference ( Ω→−Ω gvq . )  

222' qUq α+=Ω                                    (15) 

where
222

Es VUU −=

 The decrement "Ω  is derived from Eq.(9), and is given by 

( )
( ) ( )−Ω−−

−Γ
−=Ω ′′

22

2

g22

0

2

2

0

2

2

0

3

2

.3
exp1

8
sce

pe

k

pe

Uq

vq

g

qc

c
γ

ωωγ
ωω

σ
ωπ

                 

                                                                                                                           (16)

If ( )
0

0 ~
γ
ωω cek , the imaginary frequency of the magneto-longitudinal photons is 
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pe

ce

k

p

c
qc

ω
ω

σ
ωπ

3

8
−=Ω ′′                                          (17) 

We note that the decrement in this case is maximum and 
( )

]
2

.3
[exp

22

2

s

g

Uq

vq−Ω
− ≈ 1.

High power levels are required for the observation of these effects in the laboratory, and 

modern high frequency (HF) power supplies (strong laser) can produce fields in a plasma 

strong enough for the electrons to acquire relativistic velocities. In astrophysical 

situations these strong fields may be produced by the EM radiation from various 

astrophysical objects (galactic nuclei, radio galaxies and quasars, for example). 

IV. Spatial Dispersion 

In the previous section, the density of plasma was assumed constant. However we now 

allow for the variation of the plasma density due to strong radiations and shall show that 

the relativistic intense EM wave does not always lead to instabilities in a plasma. 

In order to show this we linearize the ponderomotive force given by Eq.(5) and the 

gamma factor Eq.(6) and after straight forward calculations, we obtain the following 

expression for the ponderomotive force  

+
−=

04

0

0

02

22

2

1
n

n

DG
g

DqG
cimF e

pe

ope

op

δ
γω

ω
δ                         (18) 

where

enδ is the electron density variation, 
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( ) ( ) 2
,

.2
002

00

3
±=

Ω−
−

= ±
−+

q
kQQ

ckq

QQkd
D

ωπ

and

G

2

0

2

0 −
=

cωγω
ω

 (19) 

In Eq. (18), if DG
g

pe

4

0

0

02 γω  >>1, then the ponderomotive force reduces to 

q
n

n
VmiF e

p −=
0

2

000

δγδ                     (20) 

where

2

0

2

0

0

2
2

0

−
=

ω
ωωγ

γ
cgc

V

We note that near resonance
0

~
γ
ωω ce , pFδ  becomes 

q
n

ncm
iF

c

c
p

)( 000

2

0

−
−= δ

ωωγ
ω

γ
δ                           (21)

When ωγω 0>c , the ponderomotive force changes signature as expected. 

In the limiting case of a vanishing magnetic field i.e. when, cce ωωω >>= or0 , Eq.(19)

reduces to q
n

n
cimF e

p −=
0

2

00

δγδ , which was obtained in Ref.[1]. 

     Further we consider an underdense plasma, i.e., when cVpe =>> 0ce and,ωωω .

From Eq. (20) it is evident that the ponderomotive force changes the character of 

propagation of the longitudinal plasma waves when the plasma temperature equals zero 
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or is much less than the rest energy of electrons i.e. Tcm 2

0 >> . In other words, when we 

assume temperature 0=T , then in the initial state the plasma perturbations are without 

spatial dispersion. However when we apply the force given by Eq. (20), then in the 

equation of motion of electrons there appears a pressure term with an effective 

temperature 2

00 cmT = . This term leads to spatial dispersion of the plasma. The question 

that one may ask is that when the waves in a cold magneto-active plasma are longitudinal 

in the presence of the ponderomotive force given by Eq. (20), what then is their 

frequency spectrum. By using the linear hydrodynamic set of equations for magnetized 

plasma for both electrons and ions and taking into account that the ponderomotive force 

acts only on the electrons, we obtain after a standard procedure the following linear 

dispersion relation for obliquely propagating waves. 

cq

cice

pi

ci

pi

ce

LpiL

0
sin

cos
sin

cos

sincos-1

22

22

2

22

22

2

4

222

2

22

2

22

2

2

2

22

=
−

+
−

+

+
−Ω

+
Ω−Ω

−
+

(22)

where

i

ci

oe

pepeL
m

eB

m

ne
,cq 0

2

1

0

0

2

2222
,

4~~ ==+= ωω

               and
m

ne

i

pi

2

1

0

24=ω

 and  is the angle between the wave vector q and the ambient magnetic field
0

B .
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It is important to emphasize here that in the absence of the ponderomotive force (and 

hence it implies that 0→q ) the last term in Eq.(22) disappears and we are left with the 

standard equation for the longitudinal plasma oscillation in a magnetized plasma. 

First we consider the case when the magnetic field 00 =B . The dispersion relation given 

by Eq. (22) decouples and in this case we obtain a two-frequency spectrum, the first is a 

novel Langmuir wave spectrum due to the strong relativistic effect (see for example, 

Ref.[1]) and is given by 

222~ cq
pe

+=Ω ω                                    (23)

and the second describes a new type of ion sound wave, where dispersion spectrum is 

given by

2

222/1

2

22

2/1

~1
~1

pe

s

pe

i

ooe

cq

qU

cq

qc

m

m

ωω

γ

+
=

+

=Ω                          (24) 

From Eq. (22) it is clear that when the intensity of the radiation increases, the ion sound 

velocity
2/1

0

2/1

0 γqc
m

m
U

i

e
s =  also increases. 

We now consider the case 00 ≠B , but take the ions to be immobile. Then we obtain from 

Eq. (20) the dispersion relation for the high frequency longitudinal wave spectrum as 

( )[ ]cos4
2

1

2

2

1

222222

22

2 θωωω
ceLceL

ceL Ω−Ω+±
Ω+

=Ω             (25) 
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If the radiation (the ponderomotive force term) is absent, then Eq. (25) describes the 

oscillations of the upper hybrid mode. On the other hand when q is large Eq.(25) reduces 

to the following two uncoupled modes 

2222222 sin~ cqcq cepe ≈Ω++≈Ω+ ϑω

          (26) 

ϑ222 cos
ce

Ω=Ω−

Thus our Eqs.(25) and (26) are new and are quite different from the case when radiation 

is not taken into account. 

The θ  dependence Eq. (25) is shown in Fig. (1) for 
cepe

Ω>ω~

                                      Fig.1 
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We would like to state here that in view of the consideration above we now naturally 

expect that new branches of waves appear in the low frequency range when we include 

ions density variations. To realize this statement, we consider the frequency range 

cice Ω>Ω>Ω  and from Eq. (22) for waves, which propagate strictly across the magnetic 

field (
2

πθ = ), we obtain 

Ω
+

Ω
+

=Ω
2

22

2

2

2

2 1

1
ce

ce

L

pi cq

ω

ω
                            ( 27) 

If
2

Lω  >> 
2

ceΩ , then Eq. (25) reduces to a new type of lower hybrid wave and is given 

by

Ω
+

+

Ω=Ω
2

22

2

22

2 1

~1
ce

pe

cice
cq

cq

ω

ω
                           (28)

From Eq. (28) we obtain the interesting results that when ∞→q , Ω → piω  which is also 

evident from Fig. (2). 
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                                Fig.2 

There exists another low frequency spectrum at 
2

πθ =  and 
22~

cepe
Ω<<ω  which is given 

by

( )222

222

22

cq

cq

ce

pi

ci +Ω
+=Ω

ω
ω                      (29) 

This reduces to 
222

pici
ωω +=Ω  as ∞→q .

As shown in Ref. [24], the resonant nature of the wave causes the electrons to become 

ultra relativistic even when the EM radiation is weak, i.e., even if the amplitude 
0

E  of 

EM waves satisfies the inequality .
00

BE < Because we consider a homogeneous 

collisionless cold plasma, with right–hand circularly polarized EM waves, directed along 

the external magnetic field 
0

B , from Maxwell equations the following standard 

expression for refraction coefficient can be obtained 
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( )1
0

222
2

2

ce

pck
N

ωωγω
ω

ω −
−==                  (30) 

Introducing ,
0

0

cm

eE
E

=ω we may now rewrite the expression for 0γ  in Eq.(8), in the 

following form given by  

( ) 2

0

2

2

0

2

0
1

ce

E

ωωγ
ωγγ
−

=−                      (31)

Generally speaking, this is a fourth order equation for 0γ , but when 1
2

0
>>γ , it takes a 

simple form given by 

ω
ωωγ Ece ±

=0                           (32) 

It is clear that inequality ( )1
2

0
>>γ  may be fulfilled even for a relatively small amplitude 

0E when  E cωω < and ωω >>ce . Thus it is shown from Eqs. (30-32) that two types of 

waves can exist in an electron plasma in this case. It is important to emphasize that based 

on Eq. (32), pure cyclotron resonance is absent, but the difference ( )
0 ce

ωωγ −  can 

reach the cyclotron resonance point, and it can be shown that the factor 

( )
Ece

ωωωγ =−
0

. Here we note that the relativistic effects forbid a sharp resonance. 

    Using Eq. (32), we can express the following parameters Egs VvgU and,,, 0δ ,

through
E

ω  in the following manner 
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2

24

33
2

E2

22

02

22

2

22

Vand2

,,.32

c
kc

v

g
cc

U

pece

E

pece

E
g

E

ce

pece

E

pe

E

ce

k
s

ωω
ωω

ωω
ω

ω
ω

ωω
ω

ω
ω

ω
σ

±==

±===

Here we have used 222433 i.e., cVEpeceE <<<< ωωωω . We can see that these parameters 

depend strongly on the amplitude of the electromagnetic waves. We would like to 

emphasize here that these parameters have smaller values than in the case when the 

magnetic field is absent, which in turn indicates that the frequency of the Bogoliubov 

spectrum in the presence of magnetic field is lower than without a magnetic field, if the 

wave vectors are equal in the both cases. 

V. Conclusions

In the present work we have first investigated the interaction of a spectrally broad and 

relativistic intense EM radiation in strongly magnetized plasma in the case when photon- 

photon interactions dominates the photon particle interactions. By neglecting the 

variations of the plasma density, but taking into account the variation of the wave packet, 

we obtain a dispersion relation, from which follows a Bogoliubov frequency spectrum 

and have thus reestablished, the relation between the frequency and the magnetic field. In 

the ultrarelativistic limit ( 1
2

0
>>γ , see Eq. (32)), the frequency of the Bogoliubov 

spectrum depends entirely on the amplitude of the wave. 

      In the second case we have shown even very strong radiation does not always lead to 

instabilities, and plasma with radiations remains stable. We further note that in the 
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presence of strong radiations the plasma waves have a spatial dispersion, which is absent 

when radiations are not taken into account. 
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