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Analogy between a photon in a plasma and a
free material particle

J
£ = (:\;’ pg + 'J'H%ifg

or
Mmoc” 2

T

Photon in a Vacuum
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we can say in the vacuum photon exists only in motion.
However the light can be stopped in different mediums
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For a plasma
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Thus the wave packets of light propagate with a
group velocity(u < ¢) in accordance with the

theory of relativity



Skin depth
2wc  2mh

W D ! ??k-,-r C

A\, =

takes the simple meaning of the Compton
wavelength of a photon in a plasma

In the relativistic theory a coordinate
uncertainty in a frame of reference in
which the particle is moving with energy
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For Photons
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or the characteristic dimensions of the
problem should be large in comparison with
the wavelength or the Compton length

In the quantum field theory the eigenvalues

of the Hamiltonian are
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Wigner-Movyal Equation in quantum theory
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Relativistic Kinetic Equation for the Photon Gas
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factor of the electrons



gamma can be expressed as
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The total number of Photons

N =2 / u’_/ o / ! N(k,w,7.t) = const

Hence the chemical potential of the photon
gas is not zero




In the geometric optics approximation
the one-particle Liouville-Vliasov equation
with an additional term
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here there are two forces of distinct nature which
can change the occupation number of photons
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1st one is just Compton scattering process, 2" is
new type of Compton scattering-photon scatters
on the wave packet



Existence of the longitudinal photons
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( and § are the frequency and wave vector of the
longitudinal photons.
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well known Bogoliubov energy spectrum
(microscopic theory of the super fluidity)




Pauli Equation for the Photon Gas
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where W =+ (k.7) is the scattering rate

Bose-Einstein Condensation in Photon Gas
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The Photon density
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in any point of space
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The critical temperature of the B.E condensation is
determined for the fixed points
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For non-relativistic temperature
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For ultra relativistic case

Te ~ 11/3



When the temperature is below critical T_, the
occupation number reads
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The problem of BEC and evaporation of the
Bose-Einstein condensate can be investigated by

, Which we shall derive
using Pauli equation. We suppose that
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and diffusion coefficients, respectively

where a=-=%, D, are the

First we neglect the diffusion term and consider
1D case, the solution of which is

Second



Assuming that initially all the photons are in
ground sate with

k=0, or Ngp= 4m3ngs(k)

The solution is _ 2
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We have derived a relation between the diffusion
time, t, and the time of condensation
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First Law of Relativistic Thermodynamics
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In the case of relativistically intence
circular polarized EM field, we use the
distribution function
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Where § = —Vj‘dpd‘dpoQ In 7,

The entropy per particle
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For photons




For an adiabatic process the energy is

conserved in each subsystem, i.e.
ds, =0 and
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\/1+q <<1l, m_c \/1+a <<1,
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In the opposite limit, that is for nonrelativistic
temperatures, s, 1+(,_§ >>]  we obtain

= const




For the photons the asymptotic behavior
of the entropy, in the case
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Is the entropy Iin vacuum.
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In this case the entropy depends on the
temperasture and the volume as follows
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Thus, for the adiabatic process, we obtain
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So, the specific heat for the photon gas is
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Fluctuation of the number of photons
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We now examine fluctuations in the distribution
of photons over the various “quantum” states. The
mean values of the occupation numbers n, in the
k th quantum state is

1
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The mean square fluctuation of the occupation
number of photons is
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The first term reflacts the corpuscular
behavior of the photons, wheareas the
second term is of the wave origin. In the
case, when |e(k)—p>>T, the first term is
larger than the second one.

In the opposite case |e(k)—p|<<T,, the
distribution function n,>>1.



Thus the relative fluctuations of the
number of photons does not decrease,
when the mean number of photons
iIncreases, so that

<(A”k )2> -

/1

V

/

1.




Boltzmann H-theorem for a photon gas.

In the limit of the spatial homogeneity for the
distribution function of photons the Pauli
equation was derived by L. Tsintsadze (2003)
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where kg Is the Bolizmann’s constant.
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Using the Pauli equation we obtain
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where F(k'. k)=
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Which is non-negative in any cases, i.e.

N(k',t)> N(k,t)
or reverse. Thus, dS
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Adiabatic Photon Self-Capture

In the geometric optics approximation the
Wigner Moyal equation reduces to the one
particle Liouville-Vlasov equation
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Let /and 7 be the charasteristic length and time
of variation of the potential. Supposing that

[
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With this condition the solution of the
Liouville- Vlasov equation is
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where g, is the spectral-width and &p can be <0, or >0.
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If 6p<0 In some region, and in the rest of the space
0p>0, then we have two sorts of photons. For the case
8p>0, k*+k?,6p>0, and for the density of photons
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But in the case, when there are some photons in the
cavity, then the motion of photons takes place in a
finite region of space, 1. e. they are trapped in the

potentiall well ,}
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Therefore n, we can now represent as
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Uniform Expansion of the Photon Gas

For the ultrarelativistic photon gas, I. e.
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and the suffix 0 denotes the constant initial value.



In order to determine the explicit
dependence T(f) and V(1), we study the
spherically symmetric case. Using the
continaity equatlon with assumption

}r"‘

[
n(t)y=n,, it ] and u, =u,
| \R(f )

we obtain for the radius
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Nonrelativistic photon gas, I. e.
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