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Analogy between a photon in a plasma and a
free material particle
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then
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we can say in the vacuum photon exists only in motion.
However the light can be stopped in different mediums
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For a plasma
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Momentum of the photon i s t h e g r o u p v e l o c i t y .

Thus the wave packets of light propagate with a
group velocity (u*y < c) in accordance with the
theory of relativity



Skin depth
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takes the simple meaning of the Compton
wavelength of a photon in a plasma

In the relativistic theory a coordinate
uncertainty in a frame of reference in
which the particle is moving with energy
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For Photons
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or the characteristic dimensions of the
problem should be large in comparison with
the wavelength or the Compton length

In the quantum field theory the eigenvalues
of the Hamiltonian are
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Wigner-Moyal Equation in quantum theory
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Relativistic Kinetic Equation for the Photon Gas
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where p = ~f f i is the relativistic gamma

factor of the electrons



gamma can be expressed as
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The total number of Photons rrLomn
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Hence the chemical potential of the photon
gas is not zero



In the geometric optics approximation
the one-particle Liouville-Vlasov equation
with an additional term

f ( V V ( f ) - = 0
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here there are two forces of distinct nature which
can change the occupation number of photons

1 s t one is just Compton scattering process, 2nd is
new type of Compton scattering-photon scatters

on the wave packet



Existence of the longitudinal photons

We have shown that < <

u}(k + 7}/2) ^(A- - 77/2)

and Tf are the frequency and wave vector of the
longitudinal photons.
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well known Bogoliubov energy spectrum
(microscopic theory of the super fluidity)



Pauli Equation for the Photon Gas

dt

W

where H* ± ((*'•(/) is the scattering rate

Bose-Einstein Condensation in Photon Gas
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The Photon density

Because > 0

in any point of space



The critical temperature of the B.E condensation is
determined for the fixed points

7 i /2 ( r / )

For non-relativistic temperature

For ultra relativistic case
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When the temperature is below critical Tc, the
occupation number reads
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The problem of BEC and evaporation of the
Bose-Einstein condensate can be investigated by
Fokker-Planck equation, which we shall
using Pauli equation. We suppose that
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ON r̂

where , D n are the dynamic friction

and diffusion coefficients, respectively

First we neglect the diffusion term and consider
1D case, the solution of which is
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Second
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Assuming that initially all the photons are in
ground sate with

k = 0, or A'o = 4TT3

The solution is t2

JV<M) = -
From here

< k2 >= Dtf
We have derived a relation between the diffusion
time, tp and the time of condensation

tp/tc = k -rOi whitih Ls always



First Law of Relativistic Thermodynamics
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where
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In the case of relativistically intence
circular polarized EM field, we use the
distribution function
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Where Sa = -V f dp, f dpja In

The entropy per particle
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For photons
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For an adiabatic process the energy is
conserved in each subsystem, i.e.
dsa =0 and

nae~p"
— = const
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n the opposite limit that is for nonrelativistic
temperatures, p J[+a2
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For the photons the asymptotic behavior
of the entropy, in the case
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T
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where
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is the entropy in vacuum.
For the case p » 1,
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In this case the entropy depends on the
temperasture and the volume as follows

* - ' -1/ -m~ ^ /7 7

Thus, for the adiabatic process, we obtain

T V1/6 =TVT-1 = const.

So, the specific heat for the photon gas is
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Fluctuation of the number of photons
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We now examine fluctuations in the distribution
of photons over the various "quantum" states. The
mean values of the occupation numbers nk in the
k th quantum state is
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The mean square fluctuation of the occupation
number of photons is
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The first term reflacts the corpuscular
behavior of the photons, wheareas the
second term is of the wave origin. In the
case, when |s(K)-(j,|»TTthe first term is
larger than the second one.

In the opposite case |S(K)- | I |«TV , the
distribution function n-,»l.



Thus the relative fluctuations of the
number of photons does not decrease,
when the mean number of photons
increases, so that

1



Boltzmann H-theorem for a photon gas.

In the limit of the spatial homogeneity for the
distribution function of photons the Pauli
equation was derived by L Tsintsadze (2003)
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where k& is the Bolizmann's constant
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Using the Pauli equation we obtain
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where F(k\k) =
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Which is non-negative in any cases, i.e.

N(k\t)>N(k,t)
or reverse. Thus,
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Adiabatic Photon Self-Capture

In the geometric optics approximation the
Wigner Moyal equation reduces to the one
particle Liouville-Vlasov equation

dt

where
2u = k;sp.



Let /and rbe the charasteristic length and time
of variation of the potential. Supposing that

t
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With this condition the solution of the
Liouville- Vlasov equation is
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where <rois the spectra I-width and 5p can be <0, or>0.
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If 5p<0 in some region, and in the rest of the space
5p>Q, then we have two sorts of photons. For the case
5p>Q, k2+k2

p5p>0, and for the density of photons

= w exp(
a 0

But in the case, when there are some photons in the
cavity, then the motion of photons takes place in a
finite region of space, i. e. they are trapped in the
potentiall well

U = —kp Sp
Therefore nv we can now represent as
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umr*P->0. In the

opposite limit, tjo«1, for the density of photons we
obtain r Q
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Uniform Expansion of the Photon Gas

For the ultrarelativistic photon gas, i. e.
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and the suffix 0 denotes the constant initial value,



In order to determine the explicit
dependence T(t) and V(t), we study the
spherically symmetric case. Using the
continaity equation with assumption

n(t) = Or
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we obtain for the radius
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Thus 1
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Nonrelativistic photon gas, i. e.
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