
1856-23

2007 Summer College on Plasma Physics

B. Eliasson

30 July - 24 August, 2007

Institut Fuer Theoretische Physik IV
Ruhr-Universitaet Bochum

Bochum, Germany

Numerical methods and simulations. Lecture 3: Simulation of partial
differential equations.



Summer College on Plasma Physics
ICTP
Trieste, Italy
30 July – 24 August 2007

Course: Numerical methods and simulations

Tutor: Bengt Eliasson
E-mail: bengt@tp4.rub.de
Internet address: www.tp4.rub.de/∼bengt

Lecture 3: Simulation of partial differential equations

• Will continue with simulations. Today partial differential equations

– Korteweg–de Vries–Burgers’ equation: A model for fluid flow with
dissipation (e.g. collisions) and dispersion.

Assignment: Modify the program to solve the cubic nonlinear Schrödinger
equation.

We will learn how to simulate partial differential equations which depend
both on space and time. As an example, we will simulate the Korteweg–
de Vries–Burgers’ equation

∂u

∂t
+

∂u

∂x
+

1

2

∂u2

∂x
+ α

∂3u

∂x3
− β

∂2u

∂x2
= 0, (1)

where α is the coefficient for the dispersion and β is the coefficient for
the dissipation (viscosity).

To solve a partial differential equation numerically in time, we discretize the
solution in both space and time so that the solution is only defined at
discrete points, separated by the timestep ∆t and space interval ∆x.
We will do the simulation from time t = 0 to t = tend = 12, where tend

is the end time of the simulation. The space interval is from x = 0 to
x = Lx = 40. We will use Nt = 12000 intervals in time and Nx = 1000
intervals in space, so that the timestep is ∆t = 0.001 and the spatial
grid size is ∆x = 0.04.

1



In our numerical algorithm, time is discretized as t = tk = k∆t, k =
0, . . . , Nt, and space as x = xj = j∆x, j = 0, . . . , Nx − 1. We denote
the solution u(xj, t

k) ≡ uk
j . We will use periodic boundary conditions

so that u(L, t) = u(0, t), or, for the discretized solution, uk
Nx = uk

0.

The spatial derivatives will be approximated with difference approxima-
tions, so that

∂u(xj)

∂x
≈ uj+1 − uj−1

2∆x
(2)

and
∂2u(xj)

∂x2
≈ uk

j+1 − 2uk
j + uk

j−1

(∆x)2
(3)

for j = 0, . . . , Nx− 2. The third-derivative in Eq. (1) is approximated
by combining (2) and (3). At the boundaries we will use periodic
boundary conditions so that

∂u(x0)

∂x
≈ u1 − uNx−1

2∆x
(4)

∂2u(x0)

∂x2
≈ uk

1 − 2uk
0 + uk

Nx−1

(∆x)2
(5)

for j = 0, and
∂u(xNx−1)

∂x
≈ u0 − uNx−2

2∆x
(6)

∂2u(xNx−1)

∂x2
≈ uk

0 − 2uk
Nx−1 + uk

Nx−2

(∆x)2
(7)

for j = Nx − 1.

We will use the Runge-Kutta algorithm for the time-stepping. We re-write
the K-dV-Burgers equation as

∂u

∂t
= −∂u

∂x
− 1

2

∂u2

∂x
+ α

∂3u

∂x3
+ β

∂2u

∂x2
≡ F (u, x, t). (8)

In our simulation, F(u,x, t) will contain the discretized right-hand side
of the K-dV-Burgers equation, where we use the difference approxima-
tions for the spatial derivatives, and we have denoted the unknowns
u = [u0 u1 u2 . . . uNx−1] and x = [x0 x1 x2 . . . xNx−1].

2



The Runge-Kutta algorithm then becomes

(1) F1 ← F(u, t)

(2) F2 ← F(u + ∆tF1/2, t + ∆t/2)

(3) F3 ← F(u + ∆tF2/2, t + ∆t/2)

(4) F4 ← F(u + ∆tF3, t + ∆t)

(5) u ← u + (∆t/6)(F1 + 2F2 + 2F3 + F4)

This gives the solution u at time t+∆t. The steps (1)–(5) are repeated
with the new values of u until we have reached the end of the simulation.

We now write the main program ”main.m” for our simulation. Select from
the Matlab menu File / New / M-file, then from the menu of the new
window, choose File / Save as, and Filename: main.m

We now write the program in the file:
===================================================

% The main program: main.m

clear

Nt=12000; % Number of time steps

Nprints=200; % Number of times to save data and print the results

Lx=40; % box length

Nx=1000; % Number of x intervals

dx=Lx/Nx; % Delta x

x=(0:(Nx-1))*Lx/Nx; % The x variable

dt=0.001; % The time step

t=0; % Time starts at zero.

%%% The initial condition %%%%%%%%%%%

for j=1:Nx

u(j)=1+exp(-(x(j)+15)^2/5);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Time-stepping using the Runge-Kutta algorithm

3



for j=1:Nt

[u]=RungeKutta(u,t,dt,dx);

if mod(j*Nprints,Nt)==0

plot(x,u);

axis([0 40 0 3]); % Set the axis scaling in the figure

title(’Velocity’)

pause(0.01); % Make a pause of 0.01 seconds to plot the solutions

end

end

===================================================

Then choose from the menu File / Save.

Now we write the Runge-Kutta subroutine: From the Matlab menu,
choose File / New / M-file, then choose from the menu of the new file
File / Save as, and Filename: RungeKutta.m

In the new file, we write
===================================================

% The Runge-Kutta algorithm: RungeKutta.m

function [u]=RungeKutta(u,t,dt,dx)

[F1_u]=F(u,t,dx);

[F2_u]=F(u+0.5*dt*F1_u,t+0.5*dt,dx);

[F3_u]=F(u+0.5*dt*F2_u,t+0.5*dt,dx);

[F4_u]=F(u+dt*F3_u,t+dt,dx);

u=u+dt/6*(F1_u+2*F2_u+2*F3_u+F4_u);

===================================================

Choose File / Save.

Next, we write the function that defines the right-hand side of the
differential equation. From the Matlab menu, choose File / New /
M-file, and then File / Save as and Filename: F.m

In the new file, we write
===================================================

% Definition of the differential equation: F.m

function [F_u]=f(u, t, dx)

4



alpha=0.05;

beta=0.05;

F_u=-d1x(u.^2/2+u+alpha*d2x(u,dx),dx)+beta*d2x(u,dx);

===================================================

Choose File / Save.

The spatial derivatives are defined in separate functions. The first
derivative is defined in d1x.m. From the Matlab menu, choose File /
New / M-file, and then File / Save as and Filename: d1x.m In the new
file, we write
===================================================

%Function for calculating d/dx: d1x.m

function d1x=d1x(y,dx)

N=length(y);

d1x(2:N-1)=(y(3:N)-y(1:N-2))/(2*dx);

d1x(1)=(y(2)-y(N))/(2*dx);

d1x(N)=(y(1)-y(N-1))/(2*dx);

===================================================

Choose File / Save.

Finally, the second derivative is defined in d2x.m. From the Matlab
menu, choose File / New / M-file, and then File / Save as and File-
name: d2x.m In the new file, we write
===================================================

% Function for calculating d^2/dx^2: d2x.m.

function d2x=d2x(y,dx)

N=length(y);

d2x(2:N-1)=(y(3:N)-2*y(2:N-1)+y(1:N-2))/dx^2;

d2x(1)=(y(2)-2*y(1)+y(N))/dx^2;

d2x(N)=(y(1)-2*y(N)+y(N-1))/dx^2;

5



===================================================

Choose File / Save.

We now run the program. In the Matlab window, type in main (Enter).

The result is

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

We see that the pulse self-steepens and at the end has an oscillatory
shock structure with two maxima.

Now change to alpha=0 and beta=0.05 in F.m and run the program
again. The result is

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

6



At the end we see a monotonic shock structure.

Now change to alpha=0.05 and beta=0.0 in F.m and run the program
again. The result is

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

In this case, the solution breaks up into solitary waves (K-dV solitons).

Finally, change to alpha=0 and beta=0 in F.m and run the program
again. The result is

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

Here, we see very small-scale oscillations at the end. This is an un-
physical numerical effect due to numerical dispersion. For nonlinear
problems, it is often necessary to introduce viscosity into the problem in

7



order to make the numerical method to work and to avoid oscillations
and numerical instability.

Assignment: Modify the program so that it solves the cubic Schrödinger
equation

i

(
∂u

∂t
+

∂u

∂x

)
+

1

2

∂2u

∂x2
+ |u2|u = 0, (9)

with the initial conditions u = 0.5+0.01 cos(2πx/40). Solve the system
from t = 0 to t = 100 (use Nt=50000 and dt=0.002) and plot |u|. In
Matlab, π is written pi, and |u| is written abs(u), and the imaginary
unit is written i. At the end of the simulation, the result is

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

The solution first undergoes a modulational instability and then start
to oscillate both in space and time, a phenomenon known as Fermi–
Pasta–Ulam (FPU) oscillations.

8




