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Rayleigh-Taylor instability [1]

Rayleigh-Taylor instability in a fluid system

In fluid dynamics the Rayleigh-Taylor instability represents a basic phenomenon
that occurs when a lighter fluid is accelerated into a heavier fluid.

For an inhomogeneous fluid system in a gravitational field this instability was
first discovered by Lord Rayleigh in the 18801.

It is responsible for the fact that, if surface tension effects are neglected, it is
not possible to keep water inside an inverted container (i.e., open at its bottom)
balanced by atmospheric pressure.

1Rayleigh, Lord (John William Strutt), ”Investigation of the character of the equilibrium of an incompressible

heavy fluid of variable density,” Proceedings of the London Mathematical Society, Vol. 14, pages 170 - 177 (1883)
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Rayleigh-Taylor instability [2]

Later the same concept was applied to accelerated fluids by Sir Geoffrey Taylor2.

Understanding the rate of mixing caused by the Rayleigh-Taylor instability is
important to a wide range of applications, that range from inertial confinement
fusion, nuclear weapons explosions3, supernova explosions and supernova
remnants, to oceanography and atmospheric physics, to laboratory and space
plasmas etc.

2Taylor, Sir Geoffrey Ingram,”The instability of liquid surfaces when accelerated in a direction perpendicular
to their planes,” Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol.

201, No. 1065, pages 192 - 196 (1950)
3It is interesting to look at the dates of these papers: see e.g., Fermi, E. 1951, ”Taylor instability of an

incompressible liquid”, The Collected Papers of Enrico Fermi (ed. E. Segre), vol. 2, pp. 816, 821.

>>A discussion is presented in simplified form of the problem of the growth of an initial ripple on the surface of an
incompressible liquid in the presence of an acceleration, g, directed from the outside into the liquid. The model is
that of a heavy liquid occupying at t = 0 the half space above the plane z = 0, and a rectangular wave profile is

assumed. The theory is found to represent correctly one feature of experimental results, namely the fact that the
half wave of the heavy liquid into the vacuum becomes rapidly narrower while the half wave pushing into the heavy

liquid becomes more and more blunt. ....
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Rayleigh-Taylor instability [3]

A family of different instabilities can be grouped under the general name of
Rayleigh-Taylor instabilities, with e.g., an inhomogeneous pressure playing the
role of the inhomogeneous density, or electromagnetic radiation pressure taking
the role of the lighter fluid or even, in the case of a magnetized confined plasma,
magnetic field pressure4 and magnetic field line curvature playing the role of the
lighter fluid and of gravity, respectively.

In the simple case of two immiscible incompressible fluids with densities ρ1

and ρ2 < ρ1 respectively where the denser fluid 1 in initially on top of fluid 2, the
instability linear growth rate γ can be written as

γ2 = |k|g
ρ2 − ρ1

ρ2 + ρ1
, γ2 ∼ |k|g, for ρ2 � ρ, (1)

with k the wavenumber in the interface plane and g the gravity acceleration.
4Note however that the tensor nature of the magnetic pressure, of the Maxwell stress tensor, makes a magnetic

Rayleigh-Taylor instability evolve differently from a fluid Rayleigh-Taylor instability
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Rayleigh-Taylor instability [4]

Equation (1) can be understood with a simple energy argument.

Figure 1: Inverted water air equilibrium
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Rayleigh-Taylor instability [5]

The apparently unbound increase of the growth rate at smaller wavelengths
is interrupted by effects, such as surface tension for a real fluid system, that are
not included in Eq.(1). At small wavelengths these effects first reduce the mode
growth rate and finally stabilize the mode.
Different stabilizing mechanisms have been shown to arise for different forms
of Rayleigh-Taylor instabilities, ranging from matter ablation in the pellet
compression in inertial fusion, to field line tension in the case of magnetically
confined plasmas.

The Rayleigh-Taylor instability is of special importance in the case of inertial
fusion where a fuel pellet is compressed by the reaction force exerted by the
surface layers of the pellet ablated by the energy deposited by a high intensity
laser pulse5

5S. Atzeni and J. Meyer-ter-Vehn, ”The Physics of Inertial Fusion” (Clarendon Press, Oxford, 2004)
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Rayleigh-Taylor instability [6]

Figure 2: Pellet compression in inertial fusion
from http://www.hiper-laser.org/docs/tdr/HiPERTDR2.pdf
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Rayleigh-Taylor instability [7]

Figure 3: Numerical simulation of the development of the Rayleigh-Taylor
instability of a compressed pellet
from” Fluid and kinetic simulation of inertial confinement fusion plasmas”, S. Atzeni, A. Schiavi,

F. Califano, F.Cattani, F. Cornolti, D. Del Sarto, T. V. Liseykina, A. Macchi, F. Pegoraro,

Computer Physics Communications 169, 153-159 (2005)
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Rayleigh-Taylor instability [8]

The foil geometry

In this lecture I will focus on the Rayleigh-Taylor instability of a thin accelerated
material foil. This configuration is of both of practical interest in a number of
physical conditions and is amenable to analytical solutions.

Indeed, the Rayleigh-Taylor instability of a thin plasma slab6 provides one of
the best examples of the basic nonlinear behavior of a fluid when its equilibrium
configuration is unstable against infinitesimal perturbations. In addition, in some
simplified limits exact mathematical solutions can be found that make it possible
to study the formation and the properties of singularities produced in the nonlinear
evolution of the instability.

6E. Ott, Phys. Rev. Lett 29, 1429 (1972).
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Rayleigh-Taylor instability [9]

More specifically we will consider an initially planar plasma slab (in the y-z
plane)7 of width d (along x).
We suppose that the characteristic transverse size of the slab in the y-z plane is
much larger than d and thus take for the sake of simplicity the slab to be infinitely
extended in this plane. We suppose that the foil is acted upon by a spatially
uniform pressure difference that is constant in time and that acts at all times
along the normal to the foil surface. The validity of this schematic representation
and its possible generalization will be rediscussed in the next lecture.

If we restrict ourselves to motions and deformations of the plasma slab that
do not involve spatial scales smaller that its width d we can describe the slab
as an infinitely thin foil with a given surface density given by the slab density
(assumed to be uniform) multiplied times d.

7Different geometries, such as e.g., spherical or cylindrical configurations are also easily treated.
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Rayleigh-Taylor instability [10]

This may appear as a restrictive approximation in view of the fact that Eq.(1)
would predict that the growth rate of the Rayleigh-Taylor instability increases
with its wavenumber8 k, while d−1 can be obviously taken as an upper bound on
k for the foil model to be valid.

However, as mentioned before, physical effects non included in Eq.(1) may
stabilize short wavelength perturbations and thus the thin foil approximation can
be taken as a valid model as long as the slab dynamics is correctly described by
”long wavelength” perturbations defined by the condition kd � 1.

Within this approximation, the basic equations that describe the motion of a
foil surface element are its surface mass conservation equation and the momentum
equation.

8in the foil plane
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Rayleigh-Taylor instability [11]

If we include the presence of a friction force9, these equations take the form

d

dt
(σ dΣ) = 0, (2)

and

σ

[
d

dt
+ ν(in)

]
v = P n. (3)

where v is the velocity of the foil, σ its surface mass density, P is the pressure
jump through the plasma slab with respect to the normal vector n, ν(in) is an
effective friction frequency, d/dt is the Lagrangian time derivative and dΣ is the
(oriented) surface element on the shell.

First we consider a general 3-D case where the foil position depends on all
three spatial coordinates, x, y, z and on time t.

9of interest for example in the case of a plasma foil accelerated through a partially ionized gas
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Rayleigh-Taylor instability [12]

We assume that the foil is initially located on a smooth surface that we parametrize
as x = X (y, z). In order to obtain the equations for the foil evolution, we introduce
the Lagrange variables, α, and β, related to the Euler coordinates by

x = x(α, β, t), y = y(α, β, t), and z = z(α, β, t), (4)

where α and β are a set of variables marking the foil elements.
A convenient choice of α and β is given e.g., by a set of (local) orthogonal
coordinates on the surface where the shell is located at t = 0. In the simple case
where the shell is initially planar we can choose X ≡ 0 and y = α, z = β at t = 0.
Then the surface density conservation gives σ0 dΣ0 = σdΣ, with dΣ0 = dα∧ dβ,
from which we obtain

σ0

[
d

dt
+ ν(in)

]
v = P dΣ/dΣ0. (5)
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Rayleigh-Taylor instability [13]

Two dimensional solutions;

equations are linear in Lagrange variables

An important simplification occurs in the case of two dimensional (2D) foil
evolutions defined e.g. by the condition ∂/∂z = 0 in which case
v ≡ (dx/dt) ex + (dy/dt) ey,
dΣ/dΣ0 ≡ (∂y/∂α) ex − (∂x/∂α) ey

with α the element initial position along y, ex,y the unit vectors in the x-y plane.

In this 2-D case, the evolution equations (5) expressed in Lagrangian
variables are linear.

Note that the evolution equations are not linear if expressed in Eulerian
variables.
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Rayleigh-Taylor instability [14]

Inviscid solutions

Let us first set ν(in) = 0. The 1-D solution x0 = x0(t) (i.e., ∂y0/∂α = 1,
∂x0/∂α = 0) for the accelerated foil reads

d2x0/dt2 = P/σ0, (6)

while the perturbations x̃(α, t), ỹ(α, t) obey the equations

d2x̃/dt2 = (P/σ0)(∂ỹ/∂α), d2ỹ/dt2 = −(P/σ0)(∂x̃/∂α), (7)

where no linearization has been performed. Choosing solutions of the form
exp (ikα + γt), with k the Lagrangian wavenumber, we recover the scaling

γ4 = k2(P/σ0)
2. (8)
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Rayleigh-Taylor instability [15]

It is interesting to observe that more general solutions can be obtained by
introducing10 the complex function w(α, τ) = x + iy which then obeys the
equation (in terms of a properly normalized time variable τ)

∂ττw = −i∂αw, (9)

while for the complex conjugate function w∗(α, τ) = x − iy we have

∂ττw∗ = i∂αw∗, (10)

where w and w∗ are considered as independent functions.

The solution w = iα + τ2/2 corresponds to a uniformly accelerated plane foil,
10E. Ott, Phys. Rev. Lett 29, 1429 (1972),

S. V. Bulanov, F. Pegoraro, and J.-I. Sakai Phys. Rev., E.59 , 2292 (1999).
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Rayleigh-Taylor instability [16]

while the solution w(α, τ) = x+ iy = iα3− iατ4/4−τ6/120+3α2τ2/2 describes
the local structure11 of the wave breaking.

Figure 4: Breaking solution

For w(α, τ) ∝ exp(iαq) from Eq.(9) we recover exponentially growing and
11In this solution a non homogeneous initial surface density is assumed corresponding to dy(t = 0) = σ0(α)dα,
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Rayleigh-Taylor instability [17]

decaying modes for q > 0 and oscillatory modes with real frequency for q < 0(12).

12The intervals in q are interchanged in Eq.( 10) for w∗(α, τ) ∝ exp(−iαq).
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Rayleigh-Taylor instability [18]

Lie symmetries

Eq.(9) admits 7 symmetry transformations13 represented by the operators:

X∞ = w1(α, τ)∂w, (11)

X1 = i∂α, (12)

X2 = ∂τ , (13)

X3 = 2α∂α + τ∂τ , (14)

X4 = 2iα∂τ − τw∂w, (15)

X5 = iτα∂τ − iα
2
∂α − (τ

2
+ 2iα)(w/4)w∂w, (16)

X6 = w∂w. (17)

The operator X∞ stems from the fact that Eq.(9) is linear with respect to w(α, τ) so that, to

any solution w(α, τ), one can add any other solution w1(α, τ). The operators X1 to X4 and

13A discussion of the theory of the Lie group analysis of differential equations is presented e.g., in Ovsiannikov,

L.V., Group Analysis of Differential Equations, (Academic Press, New York, 1982).
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Rayleigh-Taylor instability [19]

X6 correspond to time and space translations and to the invariance with respect to stretching of

the variables respectively. The operator X5 represents the transformation

(ᾱ, τ̄) = (α.τ)/(1 − aα), w̄ = (1 − aα)
1/2

exp [iaτ
2
/(4 − 4aα)] w. (18)

If we choose w = i/(4π)1/2 and a = −1/h , and superpose w0 = iα + τ 2/2, we obtain a

solution of the form

w̄(α, τ) = iα +
τ2

2
+

i(h)1/2

[4π(α + h)]1/2
exp

"
i

τ2

4(α + h)

#
, (19)

where i(h)1/2 is the initial perturbation amplitude and h is a complex parameter. The foil is

initially a planar with perturbations localized in a region with size of order |h|. If h is imaginary

and positive, h = i|h|, this solution describes perturbations that grow faster than exponential:

∝ exp(τ 2/4|h|).
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Rayleigh-Taylor instability [20]

Viscous solutions

If viscosity dominates over inertia we obtain14

∂τx = ∂αy, ∂τy = −∂αx, (20)

where we have suitably normalized the time variable τ .
These equations are the Cauchy-Riemann conditions for the real and imaginary
parts of an analytical function W (ζ) = x + iy of a complex variable ζ = α + iτ .
Their solutions are thus given by the conformal mapping from the complex plane
α + iτ to the plane x + iy. Choosing the analytical function

W (ζ) = −iζ + κ
1

1 + ζ2
(21)

14S. V. Bulanov, F. Pegoraro, and J.-I. Sakai Phys. Rev., E.59 , 2292 (1999).
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Rayleigh-Taylor instability [21]

where κ = κR + iκI is a complex constant, we find

x(α, τ) = τ + κR

1 − τ2 + α2

(1 − τ2 + α2)2 + 4α2τ2
+ κI

2ατ

(1 − τ2 + α2)2 + 4α2τ2
, (22)

y(α, τ) = −α + κI

1 + τ2 + α2

(1 − τ2 + α2)2 + 4α2τ2
− κR

2ατ

(1 − τ2 + α2)2 + 4α2τ2
. (23)

These expressions describe the growth of perturbations that are faster than
exponential. It easy to see that at the finite time τ = 1 the Jacobian |W ′| of the
transformation becomes infinite at the point α = 0.

A more extended description of this method can be found in S. V. Bulanov,
F. Pegoraro, and J.-I. Sakai Phys. Rev., E.59 , 2292 (1999).
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Rayleigh-Taylor instability [22]

Three dimensional viscous solutions;

equations remain nonlinear in Lagrange variables

For three dimensional viscosity dominated foil evolutions, we obtain the
equations of motion15

∂x

∂τ
= {y, z}α,β

∂y

∂τ
= {z, x}α,β

∂z

∂τ
= {x, y}α,β , (24)

where the Poisson brackets with respect to the Lagrange variables α and β are
defined by

{ , }α,β ≡
∂

∂α

∂

∂β
−

∂

∂β

∂

∂α
. (25)

15F. Pegoraro, S.V. Bulanov, J-I Sakai , G. Tomassini, Phys Rev E, 64, 016415 , (2001)
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Rayleigh-Taylor instability [23]

These equations are nonlinear but reduce reduce to the linear two-dimensional
equations if x and y are independent of β (with ∂z/∂β = 1).

Eqs.(24) can be written in the notation of differential forms as the equality of
three 3-forms involving exterior products of the 1-forms obtained by differentiating
the independent and the dependent variables

dx ∧ dα ∧ dβ = dτ ∧ dy ∧ dz,

dy ∧ dα ∧ dβ = dτ ∧ dz ∧ dx,

dz ∧ dα ∧ dβ = dτ ∧ dx ∧ dy,

where now d denotes the exterior derivative and ∧ the exterior product16.

16for a detailed definition of these operations see e.g., H. Flanders, Differential Forms with Applications to the

Physical Sciences (Dover Publ.: New York, 1989).
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Rayleigh-Taylor instability [24]

In order to recover Eqs.(24) we express the 1-form dx in terms of the three
1-forms dα, dβ, dτ as

dx =
∂x

∂α
dα +

∂x

∂β
dβ +

∂x

∂τ
dτ, (26)

and analogously for dy and dz and use the antisymmetric properties of the exterior
product.
If we interchange dependent and independent variables (hodograph
transformation) and write

dα =
∂α

∂x
dx +

∂α

∂y
dy +

∂α

∂z
dz, (27)
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Rayleigh-Taylor instability [25]

and analogously for dβ and dτ , we obtain the hodograph transformed equations

∂τ

∂x
=

∂α

∂y

∂β

∂z
−

∂β

∂y

∂α

∂z
, (28)

∂τ

∂y
=

∂α

∂z

∂β

∂x
−

∂β

∂z

∂α

∂x
,

∂τ

∂z
=

∂α

∂x

∂β

∂y
−

∂β

∂x

∂α

∂y
.

These can be combined in the vector equation

∇τ = ∇α ×∇β, (29)

where ∇τ is the gradient of the function τ = τ(x, y, z) in x, y, z space, etc. .
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Rayleigh-Taylor instability [26]

In the generalization from 2-D to 3-D the harmonic property

∇2τ = 0, (30)

where the Laplace operator is taken with respect to x, z in 2-D and to x, y, z in
3-D, is preserved .
From Eq.(29) we also obtain ∇τ · ∇α = ∇τ · ∇β = 0 and the τ -independent
compatibility equation ∇× (∇α ×∇β) = 0.
Note that, in contrast to the 2-D case where all variables play the same role, in
general ∇2α �= 0 and ∇2β �= 0.

The well known systems of orthogonal coordinates that are commonly used in
mathematical physics can be rewritten17 is such a way as to lead to solutions of
Eqs.(29).

17A number of explicit solutions can be found in F. Pegoraro, S.V. Bulanov, J-I Sakai , G. Tomassini, Phys Rev E,

64, 016415 , (2001)
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