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A theoretical study of the interchangelike !Rayleigh-Taylor" instability of a thin slab of weakly ionized

plasma is presented. We have found an analytical solution for the stationary motion of a plasma slab under the

effect of the magnetic field pressure. This solution describes a shock-wave-like structure of the magnetic field

and is unstable against the interchange mode. Using an approach developed earlier #E. Ott, Phys. Rev. Lett. 29,

1429 !1972"; S.V. Bulanov, and P.V. Sasorov, Sov. J. Plasma Phys. 4, 418 !1978"$ we have obtained exact

solutions, in terms of analytical functions of a complex variable, of the Cauchy problem for the evolution of

nonlinear perturbations. We have investigated the formation of the typical singularities that correspond to

different wave breaking regimes in an unstable medium. We discuss Ott’s problem of the Rayleigh-Taylor

instability of initially nonplanar shells. #S1063-651X!99"10602-0$

PACS number!s": 95.30.Qd, 47.20.Ky, 52.35.Tc, 52.35.Py

I. INTRODUCTION

The Rayleigh-Taylor instability provides one of the best

examples of the basic behavior of a fluid when its equilib-

rium configuration is unstable against infinitesimal perturba-

tions. This instability plays an important role in many appli-

cations including inertial confinement fusion when the target
is compressed by the laser light, plasma confinement in a
magnetic field, and supernova explosions. In many cases the
nonlinear features of the Rayleigh-Taylor instability can be
studied analytically, since in various limits its evolution ad-
mits exact solutions. In the present paper we consider a
model that provides a very transparent description of the
nonlinear stage of the Rayleigh-Taylor instability. This
model describes the dynamics of a thin slab of weakly ion-
ized plasma under the pressure of a magnetic field.
Recently the magnetohydrodynamic behavior of weakly

ionized plasmas has been the subject of several theoretical
studies in space physics. These studies have been performed
within the model of the coupled hydrodynamic equations for
the ionized and for the neutral components #1–5$. The dy-
namics of weakly ionized plasmas plays an important role in
space plasmas since they occur in protostellar disks, in the
cores of molecular clouds #2$ where stars form, and near the
photosphere of the sun. Molecular clouds have a very low
state of ionization, with ionization fractions around %
!&/& (n)'10"7, where & and & (n) are the ion and the neutral
components of the plasma. Under typical conditions for
space plasmas the magnetic field is as important as gravity in
the molecular clouds #3$, while, in the solar photosphere,
magnetic field line reconnection can be invoked in order to
explain bright point formation #4$.
An important factor in weakly ionized plasmas, besides

Ohmic and viscous dissipation, is the momentum and energy
exchange between the ionized and the neutral components.
This mechanism has been investigated in connection with the

damping of magnetohydrodynamic !MHD" fluctuations in
Refs. #1$.
The effect of the ion-neutral interaction becomes impor-

tant when the ion-neutral collision time 1/n (n)v( (in) is much
shorter than the typical time )0 of the physical process under
consideration. Estimating the cross section of the ion-neutral
collisions as ( (in)'5#10"15 cm2, and the typical time )0
as the Alfvèn time )a!l/va , with va the Alfvèn velocity, we
can write the condition when the ambipolar diffusion due to
ion-neutral collisions changes the regime of MHD motion as
l$2#1014/n (n) cm. Here n (n) is the neutral density, l is the
typical scale of the motion, and we have supposed that the
Alfvèn Mach number M a!v/va'1. Under typical param-
eters of molecular clouds, where l'1018 and n
'103 cm"3, this condition can be easily satisfied.
In the present paper, we present analytical solutions that

describe stationary regimes of motion of a weakly ionized
plasma in the magnetic field. We show that the magnetic
field has a shock-wave-like structure. This configuration is
unstable against the interchangelike instability. This instabil-
ity is similar to the interchange instability of a fluid plasma
supported against gravity by a magnetic field #6$ and to the
Rayleigh-Taylor instability. As is well known, the studies of
the Rayleigh-Taylor instability are of great importance for
inertially confined fusion since this instability is inherent to
imploding plasmas and leads to the deterioration of the im-
plosion symmetry #7$. The Rayleigh-Taylor instability in la-
ser plasmas has been studied intensively both theoretically
and experimentally !see Ref. #8$ and references therein". We
shall use the thin shell approximation developed in Refs. #9$,
#10$, and #11$ that allows us to give an analytical description
of the nonlinear aspects of the Rayleigh-Taylor instability.
We analyze the nonlinear stage of the interchange instability
of a thin plasma slab of a weakly ionized plasma and discuss
the typical structures of the singularities that appear as a
result of the instability and that correspond to various re-
gimes of the wave breaking in an unstable medium: rarefac-
tion and compression wavebreak.
The thin shell approximation is equivalent to the study of

the instability in the long wavelength limit which may be-
come invalid in the final nonlinear stage of the instability.
This limitation is discussed explicitly in Sec. VI, where it is
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argued that in the case of the rarefaction wavebreak the long-
wavelength approximation remains valid up to the formation
of the singularity itself. In the case of the compression wave-
break the long wavelength approximation ceases to be valid
in the final nonlinear stage. Thus, in this case, the results
presented in this paper have the meaning of ‘‘intermediate
asymptotics’’ and describe the trend towards the formation
of spatial singular structures.

II. BASIC EQUATIONS: STATIONARY MOTION

OF A PLASMA SLAB

In the weakly ionized plasmas in the long-wavelength ap-
proximation, which is supposed to be valid in the limit con-
sidered in the present paper, the momentum exchange be-
tween ionized and neutral components balances the Lorentz
force and the force due to the plasma pressure gradient.

Then, assuming in the limit & (n)/&%1 that the velocity of the
neutral components is much less then that of the ionized
component and neglecting the ion inertia, we obtain the sys-
tem of equations:

v!"

1

* ! in "! “P

&
"

!“#B"#B

4+&
" , !1"

, t&&-•!&v"!0, !2"

, tB!“#!v#B". !3"

Here v is the velocity of the ionized component, & is the

plasma density, B is the magnetic field, *!n (n)v( (in) and P
is the plasma pressure. To these equations we must add the
equation of state P!P(& ,T)!&T/m i . Here m i is the ion
mass and T is the sum of the ion and electron temperatures.
We take these temperatures to be constant due to the high
thermal conductivity and charge exchange rate.
In the one dimensional approximation, when all the func-

tions depend on the x-coordinate and time only, Eqs. !1"–!3"
have stationary solutions. These solutions describe a finite
width plasma slab moving under the magnetic and plasma
pressure with constant velocity V. We introduce the new
variable

X!x"Vt !4"

and obtain from Eq. !1"

&* ! in "V!"

1

m i

&!T"

1

4+
BzBz! . !5"

A prime denotes differentiation with respect to the variable
X. The magnetic field has an X-dependent Bz component
frozen in the plasma which moves with constant velocity
along the x axis. We see that Eq. !5" gives one relationship
for the two unknowns Bz and & . This means that one of these
functions is supposed to be given. The problem under con-
sideration is characterized by two dimensionless parameters,

.!

/M

Kn
!

V* ! in "/L

cs
2

!6"

and

0!

8+n0T

B0
2

!

2cs
2

va
2/
. !7"

Here B0 is the reference magnitude of the magnetic field,
n0!&0 /m i ,cs is the sound speed, / is the adiabatic index,
M!V/cs is the Mach number, va!B0 /(4+&0)

1/2 is the ref-
erence Alfvén velocity, Kn the Knudsen number defined as

Kn!cs /*
(in)L and L is a scale length. The plasma velocity is

equal to V!.csKn.
We take the magnetic field to be of the form

Bz!X "!

B1&B2

2
&

B1"B2

2
tanh! X

L
" , !8"

where B1 and B2 are the magnetic field values ahead of and
behind the plasma slab with B0!(B1&B2)/2. We see that
the magnetic field has a form of the shock wave that propa-
gates with constant velocity V along the x axis.We consider
boundary conditions such that the density & vanishes at X
→"1 .
In Fig. 1 the solution for .!0.25,0!0.5,B1!1.5,B2

!2.5 is shown. We see that the density distribution is char-
acterized by two scale lengths, the shorter is equal to the
magnetic field scale-length while the longer is about 1/0
times larger.

III. INTERCHANGELIKE INSTABILITY

OF A THIN PLASMA SLAB

Now we show that the stationary solution obtained in the
previous section is unstable. This instability is similar to the
interchange instability of a fluid plasma supported against
gravity by a magnetic field #6$ and to the Rayleigh-Taylor
instability. We shall analyze this instability in the long-
wavelength approximation, when the perturbation wave-
length is much larger than the slab width. In this approxima-
tion the plasma distribution can be assumed to have the form
of a thin foil. We adopt the approach developed in Ref. #9$ in
the case of a plasma without a neutral component.
We assume that the foil !infinite in the y and z directions"

is initially located in the x!0 plane. We take its thickness
l→0 at constant surface mass density (!&l . We consider a

FIG. 1. Distribution of the z-component of the magnetic field

and of the plasma density for .!0.25, 0!0.5, B1!1.5, and B2
!2.5.
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2D case where all variables depend on two coordinates, x
and y, and on time t and the foil moves in the x-y plane.
We introduce the Lagrange variables, x0 , and y0 , related

to the Euler coordinates by

x!x0&2x!x0 ,y0 ,t ", !9"

y!y0&2y!x0 ,y0 ,t ". !10"

Here 2x(x0 ,y0 ,t) and 2y(x0 ,y0 ,t) are the components of the
foil displacement vector. We consider two points on the foil
initially separated by the distance ds0!#dr0#; at time t they
are separated by the distance ds!#dr#, where

ds0!#!dx0"
2
&!dy0"

2$1/2 !11"

and

ds!#!dx "2&!dy "2$1/2, !12"

respectively. In the Lagrange variables we have for the sur-
face mass

(0!s0"ds0!(!x0 ,y0 ,t "ds . !13"

We introduce the surface mass Lagrange variable m, which is
given by equation

m!$ s0

(0!s0"ds0 . !14"

The magnetic field pressure acts on an element of the foil of
length ds!#dr# with the force

df!P!dr#ez", !15"

where dr is a vector in the x-y plane directed along the foil
and

P!

B2

8+
. !16"

The magnetic field B is assumed to vanish at the front of the
foil and to have a constant magnitude along the back of the
foil. In the long-wavelength approximation, which we use in
this paper, the jump of the magnetic field is constant since
the electric current density, integrated across the foil cannot
change its magnitude along the foil because of the condition
div J!0. The magnetic field pressure P!P(t) is taken to be
a given function of time.
Setting df!dm, tr, we obtain the equations of motion

* ! in "(ds ṙ!P!dr#ez". !17"

Writing dr!(dr/ds0)ds0!(dr/dm)dm we obtain the
equations of motion of the foil in the surface-mass Lagrange
variable

,)x!,my , !18"

,)y!",mx , !19"

where we have introduced the normalized time variable

)!$ tP! t "

* ! in "
dt . !20"

The stationary motion of the plasma slab with constant
velocity along the x axis corresponds to the solution of Eqs.
!18" and !19":

x!) , y!m . !21"

This solution is unstable against perturbations of the form
(x") , y"m)3exp(iqm), where q is the wave number of
perturbations in Lagrangian variables. The growth rate of the
instability is

4!q . !22"

The expression for the time dependence of the perturbations
can be rewritten in dimensional units in the form (x , y)

3exp#5t4(t)dt$ with 4!gq/* (in) where the effective gravity
g is equal to g!va

2(t)/l ,l is the foil thickness and va

!B/(4+&)1/2 is the Alfvén velocity. The growth rate of the
Rayleigh-Taylor instability of a thin slab in the absence of
friction is equal to 4RT!(gq)1/2 #9$. !This result applies also
to a finite-width, internally homogeneous, slab with sharp
boundaries #12$". We see that the ion-neutral collisions slow
down the instability when the collision frequency is larger
than 4RT .
The solution of Eqs. !18", !19", with initial conditions

x(0)!2x0 sin qm and y(0)!m&2y0 cos qm, gives

x!)&#2x0 cosh!q) ""2y0 sinh!q) "$sin qm , !23"

y!m&#2y0 cosh!q) ""2x0 sinh!q) "$cos qm , !24"

with 2x0 and 2y0 the perturbation amplitudes. It describes the
superposition of a uniform motion along the x axis with con-
stant velocity V!1 and of exponentially growing perturba-
tions with wavelength 2+/q . In the nonlinear stage of the
instability, as in the case investigated in Ref. #9$, the foil,
initially located in the plane x!0, is folded and cusps and
bubbles form with a periodic chain of maxima and minima
along y. The density of the plasma in the foil is given by

(!

(0!m "

#!,mx "2&!,my "2$1/2
. !25"

At the top of the bubbles the density decreases exponentially
in time: for )→1 we obtain (6(0(q20)

"1 exp("4)). On
the contrary, in the cusp region the density increases and a
singularity appears in a finite time after which the solution
cannot be continued. This singularity has been discussed in
Refs. #9$ and #10$ and corresponds to the compression wave
breaking.

IV. USE OF THE CONFORMAL MAPPING TO DESCRIBE

THE NONLINEAR STAGE OF THE

RAYLEIGH-TAYLOR INSTABILITY

Equations !23" and !24" give only a particular solution of
Eqs. !18" and !19". In order to find the generic solution of the
Cauchy problem we observe that Eqs. !18" and !19" are sim-
ply the Cauchy-Riemann conditions for the real and imagi-
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nary parts of an analytical function W(7) of a complex vari-
able

7!m&i) . !26"

The real part of W(7) is equal to the x coordinate of the foil,
while the y coordinate is the imaginary part. Thus we write

x&iy!W!7 ". !27"

This expression is the conformal mapping from the complex
plane m&i) to the plane x&iy .
Following Ref. #13$, where the nonlinear stage of the tear-

ing mode of a thin current sheet was investigated, we notice
that the analytical function W(7) is defined by its behavior
on the real axis t!0, i.e., by the initial conditions 2x(y0,0)
and 2y(y0,0). This gives the solution for the Cauchy problem
for the elliptical system of Eqs. !18" and !19". According to
Eq. !25" the surface mass of the foil is equal to

(!

(0!m "

#W!!7 "#
, !28"

where a prime denotes differentiation with respect to the
complex variable 7 .
The function #W!(7)# is the Jacobian of the transforma-

tion that gives the mapping of the curve x&iy!W(m), the
foil shape at )!0, to the curve x&iy!W(m&i)), which
describes the change of the foil shape. Here the time ) is the
parameter of the mapping.
In order to show the typical behavior of the solution de-

scribed by Eq. !27" we consider several different initial con-
ditions.

!i" The initial conditions

x!m ,0"!8R

1

1&m2
, y!m ,0"!"m&8 I

1

1&m2
!29"

correspond to the analytical function

W!7 "!"i7&8
1

1&72
, !30"

where 8!8R&i8 I is a complex constant and its absolute
value gives the amplitude of the perturbation. From Eq. !27"
we find

x!m ,) "!)&8R

1")2&m2

!1")2&m2"2&4m2)2

&8 I

2m)

!1")2&m2"2&4m2)2
, !31"

y!m ,) "!"m&8 I

1&)2&m2

!1")2&m2"2&4m2)2

"8R

2m)

!1")2&m2"2&4m2)2
. !32"

These expressions describe the growth of perturbations
that are faster than exponential. It is easy to see that at the
finite time )!1 the Jacobian #W!# of the transformation be-
comes infinite at the point m!0. This corresponds to the
rarefaction wave break that occurs with the formation of a
hole in the plasma density distribution. In the case of a small
amplitude perturbation. i.e., for a small absolute value of the
parameter 8 , we obtain from Eq. !30" in the neighborhood of
7!i ,

W!7 "'"i7&8
1

2!7"i "
!33"

and

W!!7 "'"i"8
1

2!7"i "2
. !34"

As mentioned above, the Jacobian #W!# tends to infinity
for )!1 at point m!0 where the plasma density vanishes.
For real positive !negative" 8 this singularity is accompanied
by the compression wave breaks at )!1'(()#8R#1/2/2 at
the points m!'#8R#1/2/2, respectively, where the plasma
density tends to infinity.
If 8 is a positive imaginary number, the singularity cor-

responds to the compression wave break at the point m!0 at
time t!1"(8 I/2)

1/2, while, if 8 is a negative imaginary
number, the singularity corresponds to the compression wave
break at the point m!'(#8 I#/2)

1/2 at time t!1. The typical
singularity corresponds to the case when both real and imagi-
nary parts of 8 do not vanish. In this case the compression
wave break occurs first, followed at t!1 by the rarefaction
wave break at m!0. This case is illustrated in Fig. 2 for 8
!0.2(1&i).

!ii" A perturbation localized in a finite region can be de-
scribed by the initial conditions

x!m ,0"!8R exp!"m2", y!m ,0"!"m&8 I exp!"m2".
!35"

The corresponding analytical function given by Eq. !27" is

W!7 "!"i7&8 exp!"72", !36"

where again 8!8R&i8 I is a complex constant. From Eq.
!27" we find

x!m ,) "!)&exp!)2"m2"#8R cos!2m) ""8 I sin!2m) "$ ,
!37"

and

y!m ,) "!m&exp!)2"m2"#8 I cos!2m) "&8R sin!2m) "$.
!38"

These expressions describe perturbations that grow faster
than exponential. We see that in a finite time, )
'(ln1/2#8#)1/2 for #8#)1, a compression wave break occurs
with the formation of singular regions where the plasma den-
sity tends to infinity. In the regions in between, ‘‘bubbles’’
form where the plasma density decreases as exp(")2).

!iii" Now we consider the analytical function
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W!7 "!exp!'i7 "&8w!7 ", !39"

where 8 is supposed to be small and "+9m9+ . This ex-
pression provides a solution of Eqs.!18" and !19" that de-
scribes the Rayleigh-Taylor instability of an initially nonpla-
nar, thin shell. The shell has a circular form modulated in the
azimuthal direction according to the function 8w(7). De-
pending on the sign in the exponent the shell either collapses
or expands and its radius decreases or increases exponen-
tially.
For initial conditions corresponding to an exponential

modulation w(m)!exp("iqm), with integer wave number
q$1, we have

W!m&i) "!exp!()'im "&8 exp!q)"iqm ". !40"

This expression describes a collapsing or expanding cylindri-
cal shell, modulated with azimuthal number q and initial
modulation amplitude #8#. We see that both converging and

diverging shells are unstable against perturbations of the
form given by Eq. !40". After a finite time interval, a com-
pression wave breaking occurs with a periodic azimuthal
structure. According to Eq. !40", in the Lagrange coordinates
we have a linear superposition of the expressions that de-
scribe the cylindrical shell motion and the exponentially
growing perturbations. In particular, there is no stabilization
of the Rayleigh-Taylor instability due to stretching of the
expanding shell. Similar patterns of the wave breaking in the
converging and expanding shells are also seen in Figs. 3!a"
and 3!b", which present the evolution of the instability in the
framework of the Ott’s model #9$, which we discuss below.
According to heuristic arguments in Euler coordinates,

stretching should saturate the perturbations when the shell
radius R increases. It is reasoned that in the Euler coordinates
the wavenumber and the amplitude of the perturbations
change according to

q̇!"

Ṙ

R
q , and Ẇ"q!) "W!0. !41"

For an exponentially growing radius of the shell, R

!R0exp()), we find q!q0exp(")). In this case the heuristic
reasoning predicts that the amplitudeW()) saturates. Pertur-
bations of the converging shell instead grow faster than ex-
ponential due to the shell shrinking. Stabilization due to
stretching has been discussed in Ref. #14$, in the case of the
vortex stability, and in Refs. #15–17$ for the tearing mode of
a current sheet.
Contrary to this prediction we see from Eq. !40" that, in

the Lagrange coordinates, the perturbation wave number
does not change. Indeed, in the Euler coordinates the typical
scale length of perturbations decreases, which implies that
the wave number grows. Since the wave number corresponds
to the derivative with respect to the coordinates, using the
relationship d/ds!J"1d/ds0 , we can write the relation be-
tween the wave number in the Euler coordinates qE and that
in the Lagrange coordinate qL as qE!J"1qL . Here J

!#ds/ds0# is the Jacobian of the transformation from the
Euler to the Lagrange coordinates. If we linearize the expres-
sion for the Jacobian, assuming that the perturbations in Eq.
!40" are relatively small, we obtain that the Jacobian in-
creases exponentially for an expanding shell so that qE
3exp("t)→0. Nevertheless, nonlinear effects due to the per-
turbations make the Jacobian vanish when the compression
wave break occurs. Thus the Rayleigh-Taylor instability is
not stabilized either in the Lagrange or in the Euler coordi-
nate plane.
However, in the case of an expanding shell, we must take

into account the slowing down of the instability because the
magnetic field inside the shell, and thus the magnetic pres-
sure acting on the shell, decrease. Assuming that the ampli-
tude of the shell modulation is smaller that the shell radius,
we estimate the magnetic flux inside the cylindrical shell as

BR2!:!const. !42"

Then, for R())!R0exp()), we find from Eq. !20"

)!
1
4 ln! :2

2+R0
4* ! in "

t " . !43"

FIG. 2. Formation of the singularity on the foil in the case when

neither the real nor the imaginary parts of 8 vanish: 8!0.2(1

&i). !a" Change of the foil shape and !b" density of the plasma

versus the y coordinate at t!0, 0,25, 0.5, 0.75, 0.9.
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Inserting this expression for ) into Eq. !40" we obtain that
the shell radius increases proportionally to t1/4 while the per-
turbations grow as tq/4.
We shall further discuss the effects of the shell expansion,

or compression, later in the context of Ott’s problem of the
Rayleigh-Taylor instability of a thin shell.

V. LOCAL STRUCTURE OF THE WAVE BREAK

IN STABLE AND UNSTABLE MEDIA

We have described several scenarios of wave breaking
that correspond to the so-called ‘‘gradient catastrophe’’
when the gradients in the perturbations tend to infinity after a
finite time interval. All these singularities can be subdivided
into two classes according to the evolution of the Jacobian of
the transformation from the Lagrange to the Euler coordi-
nates. In our case the Jacobian is equal to #W!(7)#. The the
first kind of wave break corresponds to the compression case
where the Jacobian vanishes at the point 70 . This singularity
is typical for both stable and unstable media. The discussion
of this wave break is presented in Refs. #18$ and #19$. In
collisionless media the compression wave break results in
the self-intersection of the particle trajectories and in the for-
mation of regions with the multistream motion. In dissipative
media, in the 1D case, compression wave break results in the
formation #18$ of a shock wave. In the second kind of sin-
gularities, which do not exist in stable media, the Jacobian
becomes infinite at the critical point of the transformation
70 . This singularity corresponds to the rarefaction wave
break.
In the case of the break of the first type, with #W!(70)#

!0, we can expand the function W!(7) in the vicinity of the
critical point 70 which, with a coordinate change, can be
shifted to the origin. Thus we write

W!!7 "!i.7&i072&••• !44"

and

W!7 "!i.
72

2
&i0

73

3
&••• , !45"

where . and 0 are complex constants !by a shift in the
coordinates this dependence can be transformed into the
standard form of a cubic curve used in the theory of singu-

larities #20$: i.̃ 7̃&i0̃ 7̃3&•••).
The essential property of the local representation of the

mapping from the Lagrange variables to the Euler variables
given by Eq. !45" is the cubic dependence on the m coordi-
nate. Modulo a rotation in the x-y plane, 0 can be taken real
and positive. Then we have

x!0
)3

3
&. I

)2

2
".R)m"! 0)&

. I

2
"m2••• , !46"

y!".R

)2

2
"!0)2&. I) "m&

.R

2
m2

&

0

3
m3 . . . , !47"

where only y has a cubic dependence on m. At the critical
time )!0 the foil has a cusplike shape with sides given by

y!"! .R

. I
" x'

0

3
! 2. I

" 3/2x3/2 and
x

. I

$0. !48"

If .R!0 the cusp axis is aligned along the x axis. The case
. I!0 is exceptional and leads to a different cusp form. The
singularity described by Eq. !45" has a one-dimensional
structure and the other dimensions ‘‘dress’’ it according to
Ref. #20$. Considering for the sake of simplicity the case
.R!0, we see that the singularity appears along the y coor-
dinate which, if . I$0, is a single valued function of m for
)*0 and becomes multivalued for )$0.
Now we discuss the break of the second kind, when

#W!(70)#!1 . Again, the critical point 70 can be shifted to
the origin. In order to analyze the local structure of this map-
ping, we consider the inverse mapping U(z)!W"1(z) from
the plane x&iy to the plane m&i) :

m&i)!U!z ", !49"

with z!x&iy . According to the rule of differentiation of the
inverse functions we find

dU

dz
!

1

dW

d7

, !50"

which proves the known property that the Jacobian of the
inverse mapping vanishes, U!(z0)!0, at the critical point of
the direct transformation where the Jacobian W!(70)!1 .
The coordinates of the critical point in the x&iy plane are
given by z0!W(70).
The behavior of the system near the singularity is differ-

ent depending on whether the value of z0!W(70) is finite or
infinite.
If the position of the singularity is at a finite distance in

the x-y plane from the initial foil position, we can repeat the
argument given above Eq. !44" and obtain the local expan-
sion

U!z "!i
.!

2
z2&i

0!

3
z3&••• , !51"

which is the counterpart of Eq. !45". We note that Eq. !51"
corresponds to a solution of Eqs. !18" and !19", where we
have performed the hodograph transformation that inter-
changes dependent and independent variables. This transfor-
mation yields

,x)!,ym , !52"

,y)!",xm . !53"

In the x-y plane relationship !51" corresponds to the expan-
sion

W!7 "!! 2i
.!

" 1/271/2"! "2i0!2

9.!3
" 1/273/2&••• . !54"

Choosing now, for the sake of convenience, both .! and 0!

real we obtain instead of Eqs. !46" and !47"
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m!".!xy"0!x2y&

0!

3
y3••• , !55"

)!

.!

2
!x2"y2"&

0!

3
x3"

0!

3
xy2••• . !56"

Equation !56" shows that at )'0 this break occurs along
hyperbolic arc segments. One branch of hyperbola, describ-
ing the local shape of the foil before the break, splits at x
!0,y!0 into two hyperbolic segments moving in the two
neighboring quadrants.
When the singularity in the x-y plane is at infinity, we use

the local expansion

W!7 "!"i7"i
0

7
&••• , !57"

which corresponds to Eq. !34". For U(z) in the limit z→1
we have U(z)!7!"i0/2z . Separating real and imaginary
parts, we find that asymptotically the form of the shell near
the singularity is described by a circle,

! x&

0

2) " 2&y2!
02

4)2
. !58"

Both the radius and the center of the circle tend to infinity for
)→0. A similar evolution of the perturbations is seen in Fig.
2.

VI. THE ILL POSEDNESS OF THE PROBLEM

OF A THIN SHELL INSTABILITY

The expressions obtained above describe the evolution of
initially infinitesimal perturbations of foils with a smooth
shape for )*)0 , where )0 is the time when the singularity
appears. These solutions cannot be continued after the singu-
larity. The singularities are formed when the Jacobian of the
transformation from the Euler to the Lagrange coordinates
#W!(7)# either vanishes or becomes infinite. The latter case
corresponds to a pole or to a cut of the analytical function
W(7). An arbitrary small change of the form of the initial
perturbation can lead to the appearance of a new pole in the
complex plane m&i) and can change the time and the loca-
tion of the singularity. This is a well known property of the
ill-posed problems for partial differential equations #19$. In
connection with the discussion of the final stage of various
instabilities, the ill posedness has been discussed in Refs.
#21,22,14$, in the case of the Kelvin-Helmholtz instability of
vortex sheets, and in Ref. #13$ in the case of the tearing
instability of the current sheet.
We notice that the nonlinear interactions do not regularize

the solutions, contrary to the hypothesis made in Ref. #14$, as
nonlinear interactions themselves lead to the appearance of
singularities.
There are two reasons for the formation of a singularity

after a finite time. The first mechanism is the compression
wave break, which is inherent to nonlinear systems and
originates from the (v–-)v term in the hydrodynamic equa-
tions. The second reason is due to the fact that the problems
under consideration are ill posed and it originates from the

use of the long-wavelength approximation. The expressions

that are derived in this approximation lead to instability

growth rates that increase with the wave number of the per-

turbations. If the Fourier transform of the analytical function
W(7) of the complex variable 7!m&i) , taken at )!0,

gives a function W̃(q) that extends to infinity, it leads un-
avoidably to a singular behavior of the function in the com-
plex plane m&i) at a finite distance from the origin. In other
words, there are disturbances which grow arbitrarily fast

when q→1 . Instead, if the Fourier transform W̃(q) is non-
zero only inside a finite size region #q#*qm , and vanishes
identically beyond this region, the analytical function W(7),
obtained by inverse Fourier transform, has a singular point
only at infinity #23$.
Outside the domain where the long-wavelength approxi-

mation holds, we expect that the growth rate saturates as a
function of the wave number q and vanishes either at infinity
or at a finite value q!qm . This provides a regularization of
the solution. To show this regularization we consider the one
pole approximation of the singularity given by Eq. !33". The
Fourier transform of the function W(7)!i7&a/7 is the sum
of the derivative of a ; function and of a Heaviside step

function: W̃(q)!";!(q)"ia<(q), which extends to infin-
ity in the q coordinate. In order to regularize this solution we
consider a heuristic argument and suppose that the short-
wavelength behavior of the instability results in the decay of
the perturbations with q$qm . This decay can be taken into

account as a cutoff of the function W̃(q) at qm by writing

W̃(q)!";!(q)"ia<(q)<(qm"q). The inverse Fourier
transform of this function gives W(7)!i7&a„1
"exp(iqm7)…/7 . For #7#%1/qm the behavior of this function
is similar to that in the one pole approximation. Instead,
when #7#*1/qm the growth of perturbations slows down and
becomes exponential. In addition, a modulation of the solu-
tion appears, with wavelength 2+/qm .
Before concluding this section it is important to observe

that these limitations, which are intrinsic to the long-
wavelength approximation, have different consequences in
the case of the rarefaction and of the compression wave
break. This difference arises from the opposite behavior of
the characteristic perturbation wave number k(t) when the
singularity is approached in the two cases. The long-
wavelength limit corresponds to kL)1, where L the thick-
ness of the shell. According to the analysis of Sec. IV, the
absolute value at time t of the wave number k(t) is inversely
proportional to the Jacobian #W!(7)# in Eq. !28".
In the case of the rarefaction wave break the Jacobian

#W!#(t→t0)→1 so that the long-wavelength approximation
works better and better close to the singularity since k tends
to zero as the singularity is approached. Futhermore, if we
assume that the shell keeps a constant volume density during
its evolution, Eq. !28" shows that close to the rarefaction
singularity the stretching of the shell results in a correspond-
ing reduction of its width, which also contributes to the va-
lidity of the long-wavelength approximation.
Different is the case of the compression break since

#W!#(t→t0)→0. In this case, after a relatively short time, the
solution enters the short-wavelength regime and its further
evolution depends on the specific details of the internal struc-
ture of the plasma slab, which can no longer be considered as
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a thin shell. When the wavelength of the nonlinear perturba-
tion becomes much shorter than the slab width, and the slab
has sharp boundaries, we may adopt the semi-infinite domain
model which is well developed in the case of the Rayleigh-
Taylor instability starting from the work by Fermi and von
Neumann #25$

VII. OTT’S PROBLEM FOR AN INITIALLY NONPLANAR

SHELL

In this section we assume that the density of the neutral
component vanishes so that the equation for the foil motion

is (ds r̈!df . The evolution of the Rayleigh-Taylor instabil-
ity of an initially nonplanar thin shell was investigated nu-
merically in Refs. #10$ and #11$, while an azimuthally sym-
metric configuration where the variables depend on the r and
z coordinates was discussed in Ref. #24$. Here we consider
the case of an azimuthally asymmetric foil which is taken to
be uniform along the z-axis. In the mass Lagrange coordi-
nates the 2D equations of motion of the foil, Eqs.!2" and !3"
of Ref. #9$, take the form

,))x!,my , !59"

,))y!",mx . !60"

From these equations it follows that the complex function
w(m ,))!x&iy obeys equation

,))w!"i,mw , !61"

while for the complex conjugate function w*(m ,))!x"iy

we have

,))w*!i,mw*, !62"

where w and w* are considered as independent functions
with x!(w&w*)/2, and y!"i(w"w*)/2.
The particular solution w!im&)2/2 corresponds to a

uniformly accelerated plane foil while the solution

w!m ,) "!x&iy!im3
"i

1
4m)4" 1

120 )6& 3
2m

2)2 !63"

describes the local structure of the wave breaking and has the
characteristic cubic dependence of the coordinate y on m.
For w(m ,))3exp(imq) Eq. !61" describes exponentially

growing and decaying modes for q$0 and oscillatory modes
with real frequency for q*0. The intervals in q are inter-
changed in Eq. !62" for w*(m ,))3exp(imq).
For initial conditions w0(m)!w1 exp(im)&w3 exp(iqm)

and ,)w0(m)!w2 exp(im)&w4 exp(iqm) and w0*(m)

!w5 exp("im)&w6 exp("iqm) and ,)w0*(m)!w7 exp

("im)&w8 exp("iqm) the solutions of Eqs. !61" and !62" are
of the form

w!m ,) "!!w1 cosh )&w2 sinh ) "exp! im "

&!w3 cosh!q)&w4sinh!q) "exp! iqm "

!64"

and

w*!m ,) "!!w5 cos )&w6 sin ) "exp!"im "&!w7 cos!q)

&w8 sin!q) "exp!"iqm " !65"

with constant w. .
We consider an initial configuration with q an integer

greater than one, w1!w2!w3!0 and w4!8)1, and w5
!1,w6!w7!w8!0. In this case Eqs. !64" and !65" describe
a collapsing cylindrical shell, modulated with azimuthal
number q and initial amplitude 8 . As we can see in Fig. 3!a"
the radially expanding shell is unstable against perturbations
of the form given by Eq. !64". After a finite time interval,
compression wave breaking occurs with periodic azimuthal
structure.
A converging shell is also unstable, as we see in Fig. 3!b".

The development of modes of this type was observed experi-
mentally in Ref. #26$, examining the Rayleigh-Taylor insta-
bility of a cylindrical slab. According to Eqs. !64" and !65",
in the Lagrange coordinates we have a linear superposition
of terms that describe the motion of the cylindrical shell and
exponentially growing perturbations. As in the case studied
in Sec. IV, there is no stabilization of the Rayleigh-Taylor
instability due to stretching of the expanding shell. If we take
into account that the pressure inside the shell decreases, we
find again that the exponential dependence of the perturba-
tions and of the expansion of the shell on the variable )
corresponds to slower, algebraic dependences on time.
Now we consider the generic solution of Eq. !61". This

equation admits seven symmetry transformations represented
by the operators:

X1!w1!m ,) ",w , !66"

where w1(m ,)) is a solution of Eq. !61",

X1!i,m , !67"

X2!,) , !68"

X3!2m,m&),) , !69"

X4!2im,)")w,w , !70"

X5!i)m,)"im2,m"
1
4 !)2&2im "w,w , !71"

X6!w,w . !72"

A discussion of the theory of the Lie group analysis of dif-
ferential equations is presented in Refs. #27,28$. The operator
X1 stems from the fact that Eq. !61" is linear with respect to

FIG. 3. Development of the Rayleigh-Taylor instability in the

case of Ott‘s problem !a" for a radially expanding and !b" for a

converging cylindrical shell.
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w(m ,)) so that, to any solution w(m ,)), one can add any
other solution w1(m ,)). The operators X1 to X4 and X6 cor-
respond to the existence of stationary, of uniform solutions
and to the invariance with respect to stretching of the vari-
ables, respectively. The operator X5 represents the transfor-
mation

m̄!

m

1"am
, )̄!

)

1"am
,

!73"

w̄!!1"am "1/2 exp! ia)2

4!1"am "
"w .

Under this transformation a solution f (m ,)) takes the form

w!m ,) "!

1

!1"am "1/2
exp! "

ia)2

4!1"am "
"

# f ! m

1"am
,

)

1"am
" . !74"

If we choose f!i/(4+)1/2 and a!"1/h in Eq. !74", and
superpose w!im&)2/2, we obtain a solution of the form

w!m ,) "!im&

)2

2
&

w0

#4+!m&h "$1/2
exp! i )2

4!m&h "
" ,

!75"

where w0!i(h)1/2 is the initial perturbation amplitude and h
is a complex parameter. The shell is initially a planar foil
with perturbations localized in a region with size of order
#h#. If h is imaginary and positive, h!i#h#, this solution
describes perturbations that grow faster than exponential:
3exp()2/4#h#). The typical singularity corresponds to the
nonlinear superposition of compression and rarefaction
waves. After a finite time the compression wave breaks,
while it takes an infinite time for the rarefaction wave break
to occur.
The superposition of solutions

w!m ,) "!!w1 cosh )&w2 sinh ) "exp! im "

&

w0

#4+!m&h "$1/2
exp! i )2

4!m&h "
" !76"

describes the growth of nonlinear perturbations on a cylin-
drical shell. We see that both converging and diverging
shells are unstable.

VIII. CONCLUSIONS AND DISCUSSION

We have analyzed the nonlinear magnetohydrodynamics

of a weakly ionized plasma slab. We have demonstrated that

the structure of the magnetic field in a stationary plasma slab,

moving under the magnetic field pressure, is similar to that

of a shock wave. In this case the magnetic field pressure is

balanced by the friction due to the interaction with the neu-

trals. This configuration is unstable against a Rayleigh-

Taylor-like instability. In the long-wavelength limit the

plasma slab can be approximated as a thin shell. The nonlin-

ear Cauchy problem for the thin shell has analytical solu-

tions, which we have expressed in terms of analytical func-

tions of a complex variable. We have shown that after a

finite time a singularity forms. These singularities are of two

types. !In the experiments on the nonlinear evolution of the
Rayleigh-Taylor instability of thin shell these singularities

are seen as bubbles and spikes #29$" The first type corre-
sponds to the folding of the shell leading to the compression

wave breaking. Mathematically, it arises from the nonlinear
relationship between the Lagrange and the Euler coordinates.
The second type corresponds to the tearing of the shell lead-
ing to the formation of a hole in the density. In this case the
instability growth is faster than exponential. Ott’s problem of
the Rayleigh-Taylor instability of a thin nonplanar shell also
has solutions with nonexponential growth of the perturba-
tions. In addition, in the case of a nonplanar shell, stretching
does not stabilize the perturbations. In the long-wavelength
approximation, the tearing of the shell after a finite time and
in general the faster than exponential growth are the result of
the ill posedness of the Cauchy problem. Since this ill pos-
edness is regularized outside the framework of the long-
wavelength model, the regimes with nonexponential growth
found in this paper are meant to describe the intermediate
asymptotic behavior of the perturbations. However, in the
case of the rarefaction wave break, the long-wavelength ap-
proximation holds up to the formation of the singularity
since the perturbation wave number tends to zero as the sin-
gularity is approached.
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