
1856-57

2007 Summer College on Plasma Physics

B. Eliasson

30 July - 24 August, 2007

Rhur University
Bochum, Germany

Numerical methods and simulations. Lecture 4: Solution of nonlinear
systems of equations and nonlinear boundary value problems

Summer College on Plasma Physics
ICTP
Trieste, Italy
30 July – 24 August 2007

Course: Numerical methods and simulations

Tutor: Bengt Eliasson
E-mail: bengt@tp4.rub.de
Internet address: www.tp4.rub.de/∼bengt

Lecture 4: Solution of nonlinear systems of equations and boundary value
problems.

• We will study Newton’a method to solve nonlinear systems of equations
that cannot be solved analytically.

• Nonlinear equations or systems of equations frequently occur in

– Dispersion relations (to solve ω as a function of k)

– Nonlinear boundary value problems, for example Poisson’s equa-
tion with Boltzmann electrons

d2φ

dx2
= exp(φ)− ni(x) (1)

with the potential given at x = 0 and x = L.

– Implicit time-stepping methods (e.g. Crank-Nicholson’s scheme)
where one has to solve an equation in each time-step to obtain the
solution.

Newton’s method is base on Taylor expansion of the nonlinear system.
Assume that we want to solve the nonlinear equation G(v∗) = 0 to
obtain the unknown value v∗. As an initial guess we use v, and we
have that v∗ = v + δv where δv is the correction of v to obtain the
real solution v∗. We can then Taylor expand G(v) around v so that
G(v∗) = G(v + δv) ≈ G(v) + δvG′(v). Since G(v∗) = 0 we have
δv ≈ −G(v)/G′(v), and in the Newton algorithm we have the new
value vnew ← vold −G(vold)/G′(vold).

1

Example: Solve the nonlinear equation x = cos(x) numerically. First
rewrite the equation as G(x) = x − cos(x) = 0. Then G′(x) =
1 + sin(x), and we have the correction term δx = −G(x)/G′(x) =
−(x − cos(x))/(1 + sin(x)). The Newton algorithm becomes xnew ←
xold−(xold−cos(xold))/(1+sin(xold)). If we take the initial guess x = 1,
the first few iterations give

1 δx = −0.24963613215976 x = 0.75036386784024
2 δx = −0.01125097692888 x = 0.73911289091136
3 δx = −0.00002775752607 x = 0.73908513338528
4 δx = −0.00000000017012 x = 0.73908513321516

After only 4 iterations, we have a solution with 10 digits accuracy! It
is typical for the Newton method that the number of accurate digits in
the solution doubles in each iteration. One can show that the correction
term decreases as |δxnew| = C|δxold|2 for most problems, where C is a
constant.

In multiple dimensions, we may want to solve the nonlinear system of equa-
tions ~G(~v∗) = ~0 to obtain the vector ~v∗. With the initial guess ~v we
have ~v∗ = ~v + δ~v where δ~v is the correction of ~v to obtain ~v∗. Taylor
expanding ~G around ~v we have ~G(~v∗) = ~G(~v + δ~v) ≈ ~G(~v)+Jδ~v where

J =

∂G1

∂v1

∂G1

∂v2
· · · ∂G1

∂vN
∂G2

∂v1

∂G2

∂v2
...

. . .
...

∂GN

∂v1
· · · ∂GN

∂vN

 (2)

is the Jacobian matrix. Since ~G(~v∗) = 0 we can solve for δ~v to obtain

δ~v ≈ −J−1 ~G(~v) and in the Newton algorithm we have the new value

~vnew = ~v − J−1 ~G(~v). The iterations are stopped when the norm of the
correction term, ||δv||, is smaller than some small value ε. The norm is a
measure of the ”length” of the vector. For example the Euclidian norm
(norm(x,2) in Matlab), is defined as ||~x||2 =

√
x2

1 + x2
2 + . . . + x2

N ,
and the max norm (norm(x,inf) in Matlab) is defined as ||δ~x||∞ =
max(|x1|, |x2|, . . . , |xN |).

As an example, we will now make a program to solve the system of two
coupled equations

x = y + cos(x + y) (3)

y = x + sin(xy) (4)

2

We first rewrite the system in the form ~G(x, y) = 0, or

~G =

[
G1

G2

]
=

[
x− y − cos(x + y)
y − x− sin(xy)

]
=

[
0
0

]
(5)

and the Jacobian then becomes

J =

[
∂G1/∂x ∂G1/∂y
∂G2/∂x ∂G2/∂y

]
=

[
1 + sin(x + y) −1 + sin(x + y)
−1− y cos(xy) 1− x cos(xy)

]
(6)

We now write the main program ”main.m” for the solution of the two
coupled equations. Select from the Matlab menu File / New / M-file,
then from the menu of the new window, choose File / Save as, and
Filename: main.m

We now write the program in the file:

=====================================

% Main program to solve two coupled nonlinear equations, main.m

% Initial guess

x=1; y=1;

% Create solution vector

v(1,1)=x;

v(2,1)=y;

% Solve with the Newton algorithm

v=Newton(v);

% Store the result

x=v(1,1);

y=v(2,1);

%Print the result

disp([’x=’ num2str(x,’%0.10g’) ’ y=’ num2str(y,’%0.10g’)])

=====================================

Then choose from the menu File / Save.

Now we write the Newton subroutine: From the Matlab menu, choose
File / New / M-file, then choose from the menu of the new file File /
Save as, and Filename: Newton.m

3

In the new file, we write
=====================================

% The Newton algorithm: Newton.m

% As input we have the initial guess.

function v=Newton(v)

dv=1; % dv is the norm of the correction term.

epsilon=1e-6; % The accuracy limit.

counter=0;

%Iterate the Newton algorithm until

%the correction is smaller than epsilon.

while(norm(dv,inf)>epsilon)

dv=-Jacobian(v)\G(v); % Solve the linear equation system J*delta=-F.

v=v+dv; % Update the solution

disp([’|dx|=’ num2str(norm(dx,inf),’%0.10g’) ’ x=’ ...

num2str(v(1,1),’%0.10g’) ’ y=’ num2str(v(2,1),’%0.10g’)]);

counter=counter+1;

% Check if we iterate more than 20 times, then no convergence.

if counter>20

disp(’No convergence!’)

return;

end

end

=====================================

Choose File / Save.

Next, we write the function that defines the system of nonlinear equa-
tions. From the Matlab menu, choose File / New / M-file, and then
File / Save as and Filename: G.m

In the new file, we write
=====================================

4

% Definition of the nonlinear system G(x,y)=0;

function G=G(v)

x=v(1,1);

y=v(2,1);

% The system of nonlinearly coupled equations

G(1,1)=x-y-cos(x+y);

G(2,1)=y-x-sin(x*y);

=====================================

Choose File / Save.

Finally, we write the function that defines the Jacobian for our system
of nonlinear equations. From the Matlab menu, choose File / New /
M-file, and then File / Save as and Filename: Jacobian.m

In the new file, we write
=====================================

% The Jacobian matrix dG/dv.

function Jacobian=Jacobian(v)

x=v(1,1);

y=v(2,1);

Jacobian(1,1)=1+sin(x+y); % dG1/dv1

Jacobian(1,2)=-1+sin(x+y); % dG1/dv2

Jacobian(2,1)=-1-y*cos(x*y); % dG2/dv1

Jacobian(2,2)=1-x*cos(x*y); % dG2/dv2

=====================================

Choose File / Save.

We now run the program. In the Matlab window, type in main (Enter).

The result is

||dv||=1.308454231 x=0.8442009784 y=2.308454231

||dv||=0.4010851826 x=0.9036509561 y=1.907369048

5

||dv||=0.0539587817 x=0.9576097378 y=1.927521852

||dv||=0.006653695218 x=0.9557371965 y=1.920868157

||dv||=3.898306889e-005 x=0.9557422362 y=1.920829174

||dv||=3.816997014e-010 x=0.9557422366 y=1.920829173

x=0.9557422366 y=1.920829173

We see that we have 10 significant digits after 6 iterations! Also here it
is typical for the Newton method that the number of accurate digits in
the solution doubles in each iteration. One can show that when ||δv||
is small enough, the correction term decreases as ||δvnew|| = C||δvold||2
for most problems, where C is a constant.

It is necessary to give an initial guess that is close enough to the solution
that we want. For example, the initial guess x = y = 10 gives different
solution from that above, and the initial guess x = 10, y = −10 leads
to no convergence!

In Matlab, there also exists a command roots to find all roots of a
polynomial. This is very useful to find solutions of dispersion relations
in fluid plasmas. Example: to find the complex roots of the polynomial

w4 + 2w3 + 3w2 + w + 4 = 0 (7)

we do the command in Matlab

roots([1 2 3 1 4])

The result is

ans =

-1.3030 + 1.3062i

-1.3030 - 1.3062i

0.3030 + 1.0409i

0.3030 - 1.0409i

i.e., the complex roots are

w1 = −1.3030+1.3062i, w2 = −1.3030−1.3062i, w3 = 0.3030+1.0409i
and w4 = 0.3030− 1.0409i

6

Example 2/Assignment (Nonlinear boundary value problem):

Write a program that solves the nonlinear Poisson equation

∂2φ

∂x2
= exp(φ)− ni(x) (8)

where ni = 1 + exp(−3(x − 5)2), on the domain 0 ≤ x ≤ L with the
boundary conditions φ(0) = 0 and φ(L) = 0 with L = 10.

First we write the equation as

∂2φ

∂x2
− exp(φ) + ni(x) = 0. (9)

Then discretize the space into discrete points x = x0, x1, . . . , xNx and
represent the space in a column vector

~x =

x0

x1
...

xNx

 (10)

Then discretize the solution as φ = φ0, φ1, . . . , φNx, where φj ≈ φ(xj).
Order the solution in a column vector as

~φ =

φ0

φ1
...

φNx

 (11)

In order to obtain the Nx + 1 unknowns φj, we need Nx + 1 equations

which we symbolically denote ~G(~φ, x) = 0, where the equations are
ordered into a column vector

~G =

G0

G1
...

GNx

 (12)

We now find the equations. The left-hand boundary condition is φ0 = 0
so that G0 = φ0, while the right-hand boundary condition is φNx = 0 so
that GNx = φNx. Between the boundaries, we have the nonlinear Pois-
son equation, which we approximate with a centered difference method
so that

φj−1 − 2φj + φj+1

∆x2
− exp(φj) + ni(xj) = 0, j = 1, . . . , Nx − 1, (13)

7

hence

Gj =
φj−1 − 2φj + φj+1

∆x2
− exp(φj)+ni(xj), j = 1, . . . , Nx−1. (14)

Then the Jacobain matrix becomes

J =

∂G0

∂φ0

∂G0

∂φ1
· · · ∂G0

∂φN
∂G1

∂φ0

∂G1

∂φ1

...
. . .

...
∂GNx

∂φ0
· · · ∂GNx

∂φNx

=

1 0 · · · 0
1

∆x2 − 2
∆x2 − exp(φ1)

1
∆x2

0 1
∆x2 − 2

∆x2 − exp(φ2)
1

∆x2

...
...

. 0
0 1

∆x2 − 2
∆x2 − exp(φNx−1)

1
∆x2

0 · · · 0 1

(15)

We now write the program to solve the nonlinear system of equations.
Fitst the main program, main.m:

=====================================

% Main program to solve two coupled nonlinear equations: main.m

clear

L=10; Nx=100; dx=L/Nx; x=(0:Nx)’*dx; ni=1+exp(-3*(x-5).^2);

% Initial guess

phi=log(ni);

dx

% Solve with the Newton algorithm

phi=Newton(phi,x,ni,dx,Nx);

%Plot the result

subplot(3,1,1) plot(x,phi) title(’\phi’) subplot(3,1,2)

plot(x,exp(phi)) title(’n_e’) subplot(3,1,3) plot(x,ni) title(’n_i’)

=====================================

8

Next we wtite the Newton algorithm in the file Newton.m

=====================================

% The Newton algorithm: Newton.m

% As input we have the initial guess.

function phi=Newton(phi,x,ni,dx,Nx)

dphi=1; % dx is the norm of the correction term.

epsilon=1e-6; % The accuracy limit.

counter=0;

%Iterate the Newton algorithm until

%the correction is smaller than epsilon.

while(norm(dphi,inf)>epsilon)

% Solve the linear equation system J*delta=-F.

dphi=-Jacobian(phi,x,ni,dx,Nx)\G(phi,x,ni,dx,Nx);

phi=phi+dphi; % Update the solution

disp([’||dphi||=’ num2str(norm(dphi,inf),’%0.10g’)]);

counter=counter+1;

% Check if we iterate more than 20 times, then no convergence.

if counter>20

disp(’No convergence!’)

return;

end

end

=====================================

The system of equations ~G is calculated in the the file G.m:

=====================================

% Definition of the nonlinear system: G.m

9

function G=G(phi,x,ni,dx,Nx)

% The system of nonlinearly coupled equations

G(1,1)=phi(1,1);

G(2:Nx,1)=(phi(1:Nx-1,1)-2*phi(2:Nx,1)+phi(3:Nx+1,1))/dx^2 ...

-exp(phi(2:Nx,1))+ni(2:Nx,1); G(Nx+1,1)=phi(Nx+1,1);

=====================================

Finally, the Jacobian matrix is calculated in the file Jacobian.m

=====================================

% The Jacobian matrix dG/dphi: Jacobian.m

function Jacobian=Jacobian(phi,x,ni,dx,Nx)

Jacobian=sparse(0); % Store only non-zero elements

Jacobian(1,1)=1;

for j=2:Nx

Jacobian(j,j-1)=1/dx^2;

Jacobian(j,j)=-2/dx^2-exp(phi(j,1));

Jacobian(j,j+1)=1/dx^2;

end

Jacobian(Nx+1,Nx+1)=1;

=====================================

Now try to run the program by the command main in matlab. The
printout on screen shows the norm of the correction term, which is a
measure of the convergence of the method.

Printout:

||dphi||=0.3246604088

||dphi||=0.02132031524

||dphi||=0.0001206819599

||dphi||=4.499908369e-009

10

After 4 iterations, we have the solution with about 10 digits accuracy.
The plot of the solution is

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4
φ

0 1 2 3 4 5 6 7 8 9 10
1

1.2

1.4

1.6

1.8

n
e

0 1 2 3 4 5 6 7 8 9 10
1

1.5

2

n
i

11

