

1856-33

2007 Summer College on Plasma Physics

30 July - 24 August, 2007

Numerical Laboratory for Plasma Astrophysics

R. Matsumoto

R. Matsumoto Chiba University Chiba Shi, Japan **2007 Summer College on Plasma Physics**

Numerical Laboratory for Plasma Astrophysics

Ryoji Matsumoto (Chiba University)

Contents

- Introduction
- Numerical MHD Laboratory for Astrophysics
- Simulation Engines
- Examples of Astrophysical MHD Simulations
- Summary and Future

1. Introduction

 Magnetic fields often play essential roles in astrophysical phenomena

X-ray image of the Sun by HINODE satellite

Magnetic Loops Observed by TRACE

CONVECTION ZONE

Sunspot

HINODE Observation of The Time Evolution of Sunspots

Plasma Motion Observed by the Optical Telescope of HINODE Satellite

Magnetic Energy Release in the Solar Corona: Solar Flares

Hinode Observation of X-ray Loops Before and After a Flare

Before

After

Outflows from the Sun

Solar Wind Observed by the SOHO Satellite

Astrophysical Jets and Disks

Protostars (Burrows 1995)

Microquasar (Mirabel et al. 1994)

MHD Simulation of Astrophysical Jets

Magnetocentrifugally driven jet ejected from accretion disks Magnetic Tower Jet : Light jet dominated by Poynting flux

MHD Equations

$$\frac{\partial \rho}{\partial t} + \nabla(\rho \mathbf{v}) = 0$$

$$\rho \frac{\partial \mathbf{v}}{\partial t} + \rho(\mathbf{v} \bullet \nabla) \mathbf{v} = -\nabla P + \frac{(\nabla \times \mathbf{B}) \times \mathbf{B}}{4\pi} + \rho \mathbf{g}$$

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{v} \times \mathbf{B}) + \eta \nabla^2 \mathbf{B}$$

$$\frac{\partial \rho \varepsilon}{\partial t} + \nabla(\rho \varepsilon \mathbf{v}) + P \nabla \mathbf{v} = Q_J + Q_{vis} - Q_{rad}$$

MHD Simulations in Astrophysics

- Gravity is often important
- The backgound is not uniform
- We need to implement open boundary conditions
- Nonlinear growth of instability leads to astrophysically interesting phenomena such as flares and outflows
- We have to deal with shock waves

2. Numerical MHD Laboratory for Astrophysics

- We use computers as telescopes to explore the extreme universe
- Numerical Simulations extend our perspective

http://www.astro.phys.s.chiba-u.ac.jp/netlab/

ACT-JST Project (2000 - 2002) Developments of Network Laboratory System for Astro / Space Simulations

Contents of the AstroSimulator Page

Movie Page of 2D Basic Simulation Exercises

Coordinated Astronomical Numerical Software (CANS)

- Main Content of the Astro-Simulation Laboratory
- Integrated Simulation code for Astrophysical MHD Simulations
- Library of Basic
 Simulation exercises
 + pluggable modules
- Users can carry out new simulations by slightly modifying the package closest to their problem.

CANS: Simulation Modules

>cd cans

>ls

Develop.txt Models.pdf README cans1d/ cans3d/ htdocs/ Makefile NonLTE Readme.pdf cans2d/ cansnc/ idl

>cd cans2d				
>ls				
bc/	cndbicg/	cndsor/	cndsormpi	common/
commonmpi/	hdmlw/	htcl/	md_advect/	md_awdecay/
md_cloud/	md_cme/	md_cndsp/	md_cndtb/	md_corjet/
md_efr/	md_itmhdshktb/	md_itshktb/	md_jetprop/	md_kh/
md_mhd3dkh/	md_mhd3dshktb/	md_mhdcloud/	$md_mhdcondtb/$	md_mhdgwave/
md_mhdkh/	md_mhdshktb/	md_mhdsn/	md_mhdwave/	md_mri/
md_parker/	md_reccnd/	md_recon/	md_recon3/	md_rt/
md_sedov/	md_shkref/	md_shktb/	md_sndwave/	md_thinst/
mdp_awdecay/	mdp_cme/	mdp_cndsp/	mdp_cndtb/	mdp_corjet/
mdp_efr/	mdp_itmhdshktb/	mdp_itshktb/	mdp_jetprop/	mdp_kh/
mdp_mhd3kh/	mdp_mhd3shktb/	mdp_mhdcndtb/	mdp_mhdkh/	mdp_mhdshktb/
mdp_mhdsn/	mdp_mhdwave/	mdp_mri/	mdp_recon/	mdp_recon3/
mdp_rt/	mdp_sedov/	mdp_shkref/	mdp_shktb/	mdp_thinst/

An Example of Basic Simulation Exercises : MHD supernova

>cd cans2d/md_mhdsn
>ls
Makefile Makefile-nc Makefile-pgnc anime.pro bnd.f
main.f model.f pldt.pro rddt.pro rdnc.pro

Compile and Run

```
>make 'FC=f77' ←並 'FC=mpif77' to use parallelized modules
>ls
Makefile Makefile-nc Makefile-pgnc a.out anime.pro
ay.dac bnd.f bnd.o bx.dac bz.dac
main.f main.o model.f model.o params.txt
pldt.pro pr.dac rddt.pro rdnc.pro ro.dac
t.dac vx.dac vz.dac x.dac z.dac
```

Simulation results : *.dac

CANS: Available Platforms

- You need a Fortran Compiler
- Implemented Machines
 - Linux PC, Sun、SGI WS, cygwin, VPP5000, Earth Simulator, ...
 - Optimized for Vector-parallel processors
 - We prepared modules parallelized by MPI
 - Parallel Performance is more than 99.9% on Earth Simulator
- DATA Visualization
 - Use IDL
- DATA I/O :
 - netCDF
 - Other portable format

Simulation School

Snapshots of Simulation School

Examples of Group Projects in the **Simulation School**

Study the dependence of the Alfven wave flux on twist angle of magnetic reconnection

Stabilization of KH Instability by Magnetic Field

3. Simulation Engines

Finite Difference Solutions for System Equations

• Basic Equation in Conservation Form $\frac{\partial u}{\partial t} + \frac{\partial f}{\partial x} = 0$

In ideal hydrodynamics,

$$\boldsymbol{u} = \begin{pmatrix} \rho \\ \rho v \\ \frac{\rho v^2}{2} + \frac{P}{\gamma - 1} \end{pmatrix} \boldsymbol{f} = \begin{pmatrix} \rho v \\ \rho v^2 + P \\ \frac{\rho v^3}{2} + \frac{\gamma P v}{\gamma - 1} \end{pmatrix}$$

Basic Equations in Ideal MHD

$$\boldsymbol{u} = \begin{pmatrix} \rho \\ \rho u \\ \rho v \\ \rho w \\ \rho w \\ B_{y} \\ B_{z} \\ \rho E \end{pmatrix} \boldsymbol{f} = \begin{pmatrix} \rho u \\ \rho u^{2} + P + \frac{B_{y}^{2} + B_{z}^{2} - B_{x}^{2}}{B_{x}^{4} - B_{y}^{4} - B_{y}^{4} - B_{y}^{4} - B_{z}^{4} -$$

Two-step Lax-Wendroff Scheme

Approximate Riemann Solver

$$\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{A} \frac{\partial \boldsymbol{u}}{\partial x} = 0 \quad \text{Where} \quad \boldsymbol{A} = \frac{\partial \boldsymbol{f}}{\partial \boldsymbol{u}}$$
$$|\boldsymbol{A} - \lambda \boldsymbol{I}| = 0 \quad \Longrightarrow \quad \text{eigenvalues}$$

We can diagonalize the Matrix A by using Right eigenvectors and left eigenvectors of A

By defining

 $d\mathbf{w} = \mathbf{L}\mathbf{d}\mathbf{u}$ we obtain

$$\frac{\partial w_{i}}{\partial t} = \begin{bmatrix} \lambda_{1} & \\ \lambda_{2} & \\ \lambda_{3} \end{bmatrix}$$

$$\frac{\partial w_{i}}{\partial t} + \lambda_{i} \frac{\partial w_{i}}{\partial x} = 0$$

 $\Lambda = T \Lambda P$

Numerical Flux

- We can apply upwind scheme for each wave $\frac{\partial w_i}{\partial t} + \lambda_i \frac{\partial w_i}{\partial x} = 0$
- Numerical Flux

$$\begin{split} \tilde{f}_{u,j+1/2} &= R \, \tilde{f}_{w,j+1/2} \\ &= \frac{1}{2} \left[f_{u,j+1} + f_{u,j} - R \left| \Lambda \right| L \left(u_{j+1} - u_{j} \right) \right] \\ u_{j}(t + \Delta t) &= u_{j}(t) - \frac{\Delta t}{\Delta x} \left(\tilde{f}_{u,j+1/2} - \tilde{f}_{u,j-1/2} \right) \end{split}$$

Roe Average

• Numerical Flux is computed by using the following average (Roe Average)

$$\bar{\rho} = \sqrt{\rho_{j+1}\rho_j}$$

$$\bar{v} = \frac{\sqrt{\rho_{j+1}}v_{j+1} + \sqrt{\rho_j}v_j}{\sqrt{\rho_{j+1}} + \sqrt{\rho_j}}$$

$$\bar{H} = \frac{\sqrt{\rho_{j+1}}H_{j+1} + \sqrt{\rho_j}H_j}{\sqrt{\rho_{j+1}} + \sqrt{\rho_j}}$$

$$\bar{c}_{\rm s}^2 = (\gamma - 1)\left(\bar{H} - \frac{\bar{v}^2}{2}\right)$$

Property U

- The velocity matrix A computed by Roe Average satisfies
 - For any uj and uj+1

$$\mathbf{f}_{j+1} - \mathbf{f}_j = \mathbf{A}(\mathbf{u}_{j+1}, \mathbf{u}_j)(\mathbf{u}_{j+1} - \mathbf{u}_j)$$

- All eigenvectors are real
- When $u_{j+1} = u_j$

$$oldsymbol{A}~=~\partialoldsymbol{f}/\partialoldsymbol{u}$$

• These properties are called "Property U"

CIP-MOCCT Scheme

 CIP scheme has been developed by Yabe (1991) Cubic Interpolated Propagation

Constrained Interpolation Profile

CIP Transports both Physical Quantities and their Gradient

CIP Scheme for MHD Equations

	Transport	1	Source Term
	$\frac{\partial \rho}{\partial t} + ({\bf u} \cdot \nabla) \rho$	=	$-\rho abla \cdot \mathbf{u}$
	$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u}$	=	$-\frac{1}{\rho}\nabla(p+\frac{B^2}{8\pi})+\frac{1}{4\pi\rho}(\mathbf{B}\cdot\nabla)\mathbf{B}+\mathbf{Q_f}$
	$\frac{\partial p}{\partial t} + ({\bf u}\cdot\nabla)p$	=	$-\gamma p \nabla \cdot \mathbf{u} + \mathbf{Q}_{\mathbf{p}}$
$\frac{\partial \mathbf{B}}{\partial t}$	$-\nabla\times\left(\mathbf{u}\times\mathbf{B}\right)$	=	⁰ Special Care should be
	$ abla \cdot {f B}$	=	0 taken for induction
			equation and div B=0

CT (Constrained Transport) scheme

MOC scheme (Stone and Norman 1992)

$$\frac{\partial \mathbf{V}_{y}}{\partial t} = \frac{B_{y}}{4\pi\rho} \frac{\partial B_{y}}{\partial x} - \frac{\partial}{\partial x} (\mathbf{V}_{x}\mathbf{V}_{y}) \quad \mathcal{E} = -\left(\mathbf{V}_{x}^{*} B_{y}^{*} - \mathbf{V}_{y}^{*} B_{x}^{*}\right)$$

$$\frac{\partial B_{y}}{\partial t} = B_{x} \frac{\partial \mathbf{V}_{y}}{\partial x} - \frac{\partial}{\partial x} (\mathbf{V}_{x}B_{y}) \quad \text{Compute vx}^{*}, \text{By}^{*} \text{ etc by Method}$$
of Characteristics
$$\frac{D\mathbf{V}_{y}}{Dt} \mp \frac{1}{\sqrt{4\pi\rho}} \frac{DB_{y}}{Dt} = 0, \quad \frac{D}{Dt} = \frac{\partial}{\partial t} + \left(\mathbf{V}_{x} \pm \frac{B_{x}}{\sqrt{4\pi\rho}}\right) \frac{\partial}{\partial x}$$
When ρ is constant,
$$\left(\mathbf{V}_{y}^{*} - \mathbf{V}_{y}^{+}\right) - \frac{1}{\sqrt{4\pi\rho^{+}}} \left(B_{y}^{*} - B_{y}^{+}\right) = 0$$

$$\left(\mathbf{V}_{y}^{*} - \mathbf{V}_{y}^{-}\right) + \frac{1}{\sqrt{4\pi\rho^{-}}} \left(B_{y}^{*} - B_{y}^{-}\right) = 0$$

$$\frac{C^{+}}{\mathbf{V}_{y}^{*} + \mathbf{E}_{y}^{+} + \frac{1}{\mathbf{E}_{y}^{+} - \mathbf{E}_{y}^{-}} \left(B_{y}^{*} - \mathbf{E}_{y}^{-}\right) = 0$$

Example of Simulation using CIP

by using CIP

modified Lax-Wendroff method log10(Density) Poloidal magnetic field lines log10(Temperature) Comparison 000e =5.20 tione = 5,30 between Ø 14 14 54 MLW -0. scheme and 0.0 0.2 0.4 0.6 0.8 1.0 1.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 00.0 CIP-CIP-MOCCT method log10(Density) log10(Temperature) MOCCT ibme =5.20 5.20 scheme 14 14 -0. (Kudoh et al. 1998)

-1.

0.0 0.2 0.4 0.6 0.8 1.0 1.2

4. Examples of MHD Simulations using CANS

Solar Convection Observed by HINODE

Launch of HINODE 2 0 0 6 . 9 . 2 3

Optical Telescope

G band (Photosphere)

Ca H line (Chromosphere)

MHD Simulation of Magneto-Convection

16H×16H×30H β =300 at z=0

Isobe et al. 2007

Simulation of Magneto-Convection when the Magnetic Field is Strong

β=150 at z=0

3D M H D Simulation of Solar Emerging Magnetic Flux

Structure Formation by Rayleigh Taylor Instability

Density isosurface and Current Density

Hα Arch Filament (Hida Observatory, Kyoto Univ) Numerical Simulations of X-ray Emitting Plasma in Cluster of Galaxies

Distribution of dark matter obtained by N-body simulation by Yahagi (2002)

Hydrodynamical simulation of a moving subclump in cluster of galaxies by Asai (2005)

Cold Fronts in Subclumps Moving in Cluster of Galaxies

3D MHD Simulation of Subclumps Moving in Cluster of Galaxies

Asai, N., Fukuda, N., and Matsumoto, R. 2007

Basic Equations

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$$

$$\rho \left[\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} \right] = -\nabla p + \frac{(\nabla \times \mathbf{B}) \times \mathbf{B}}{4\pi} - \rho \nabla \psi$$

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{v} \times \mathbf{B})$$

$$\frac{\partial}{\partial t} \left[\frac{1}{2} \rho v^2 + \frac{B^2}{8\pi} + \frac{p}{\gamma - 1} \right] + \nabla \cdot \left[\left(\frac{1}{2} \rho v^2 + \frac{\gamma p}{\gamma - 1} \right) \mathbf{v} + \frac{-(v \times \mathbf{B}) \times \mathbf{B}}{4\pi} - \kappa \nabla T \right] = -\rho \mathbf{v} \cdot \nabla \psi$$

Thermal Conductivity

Suppression of Thermal Conduction

Magnetic Field Amplification

Summary and Future

- MHD simulations are powerful in studying nonlinear phenomena in astrophysical plasmas
- We have developed a virtual laboratory system for astrophysical MHD simulations
- We are going to implement Relativistic MHD modules, Radiation MHD modules, and nested grid modules
- Micro-Macro coupling such as the connection between MHD simulations and particle simulations is a future work
- Please visit our web-site
 - http://www.astro.phys.s.chiba-u.ac.jp/netlab/

