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Faculté des Sciences Appliquées, avenue F.D. Roosevelt 50, 1050 Bruxelles, Belgium

Permanent affiliation: Institute of Physics, Belgrade, Yugoslavia ⇒ Serbia and Montenegro ⇒ Serbia

In collaboration with: S. Poedts1, B. P. Pandey2, B. De Pontieu3

1Center for Plasma Astrophysics, Celestijnenlaan 200B, 3001 Leuven, Belgium
2Department of Physics, Macquarie University, Sydney, NSW 2109, Australia
3Lockheed Martin Solar and Astrophysics Lab, 3251 Hanover St., Org. ADBS, Bldg. 252, Palo Alto, CA 94304,

USA



Summer College on Plasma Physics, AS-ICTP, Trieste, Aug. 2007.

Plan

1. Motivation

2. Alfvén wave in strongly collisional plasmas

- physical picture

- wave energy flux

3. Drift-Alfvén wave in collisional plasmas

- hot ions effects

- local and global modes

2



1. Motivation 1-3

1. Motivation

Academic:
- to try to understand the physics of waves in colli-
sion dominated/weakly ionized plasmas
- investigate the effects of neutrals

- Apply the results to solar atmosphere
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Reasons for applying to solar atmosphere:

a) The convective motions (typical velocities about 0.5 km/s; values up to 2 km/s

also possible) in the solar photosphere, resulting in the foot point motion of different

magnetic structures in the solar atmosphere, are frequently proposed as the source

for the excitation of Alfvén waves, which are assumed to propagate towards the chro-

mosphere and corona resulting finally in the heating of these layers by the dissipation

of this wave energy. However, the photosphere is i) very weakly ionized, and, ii) the

dynamics of the plasma particles in this region is heavily influenced by the plasma-

neutral collisions. The purpose of this work is to check the consequences of these

two facts on the above scenario and their effects on the electromagnetic waves.

b) Solar plasmas are structured and stratified both vertically and horizontally. The

presence of density gradients and magnetic fields results in an additional wave which

can be electrostatic (the drift wave) and electromagnetic (the drift-Alfvén wave), and

can not be predicted in the widely used MHD description.
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2. Alfv én wave in strongly collisional plasmas

On collisions in weakly ionized plasmas

• We introduce here the collision frequencies between charged and uncharged particles

νjn = nn0σjnvTj for j = e, i, and the Spitzer-Härm formulas1 for the Coulomb

collisions between charged plasma particles:

νee + νei≃2νei=
[
4ne0(2π/me)

1/2[eei/(4πε0)]
2Lei/[3(κTe)

3/2]
]
,

νii =
[
4ni0(π/mi)

1/2[e2i/(4πε0)]
2Lii/[3(κTi)

3/2]
]
.

The Coulomb logarithm Lei = log[12πε0(ε0/ni0)
1/2(κTe)

3/2/(ee2i )].

• Several comments.

- Using the full quantum theory as well as the semi-classical approach, the elastic

proton-hydrogen (H+ + H) collision cross section is calculated by Krstic and
1L. Spitzer, Physics of Fully Ionized Gasses (Interscience Publishers, New York-London, 1962) p. 146
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Schultz2, and its integral value at 0.5 eV is about 1.8 · 10−18 m2 for the elastic

scattering, and about 10−18 m2 for the momentum transfer. As for the electron-

hydrogen (e− + H) collisions, the collision cross section is also temperature

dependent and the corresponding values can be found in the work of Bedersen

and Kieffer3. At energies of 0.5 eV it is about 3.5 · 10−19 m2, so that for the

elastic scattering we have σin/σen ≃ 6.

- We do not include the inelastic collisions which take place in a partially ionized

plasma like in the photosphere. It can be shown4 that, in the photosphere, all

ions in a unit volume are recombined many times per second. The three-body

recombination (the process of the typeH+ + e− + e− → H + e−) is dominant

in this region. At the altitude of h = 500 km, the radiative recombination (the

process described by H+ + e− → H + hν) and the three-body recombination

are of the same order. At higher altitudes the radiative recombination becomes the

leading loss effect. At h = 1000 km it is by a factor 100 larger than the three-body

2P. S. Krstic and D. R. Schultz, J. Phys. B: At. Mol. Opt. Phys. 32, 3485 (1999)
3 B. Bedersen and L. J. Kieffeer, Rev. Mod. Phys. 43, 601 (1971)
4J. Vranjes and S. Poedts, Phys. Lett. A 348, 346 (2008)
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recombination.

- Also, the charge exchange between the ionized and neutral hydrogen is frequent.

The cross section for the proton-hydrogen charge exchange σex at the above

given temperatures is about 5.6 · 10−19 m2, i.e., for hydrogen it is a large fraction

(≃ 0.3) of the realistic elastic scattering cross section σin given above. Note,

however, that for some other gases like He, Ne, and Ar, we have σex > σin the

charge exchange cross section exceeds the one for the elastic scattering5

- Consequently, due to the inelastic collisions and the charge exchange, neutrals/ions

in the plasma spend a part of their time in the ionized/neutral state, respectively.

As a result, the effective collision frequencies are expected to be even higher than

the values which we shall use.

Physical picture of the Alfv én wave

• In the case of the shear Alfvén wave with ~B0 = B0~ez, both ion and electron fluids

oscillate in the direction of the perturbed magnetic field vector ~B1 = B1~ey. This

is due to the ~E1 × ~B0 drift, which does not separate neither charges nor masses,
5Y. P. Raizer, Gas discharge physics (Springer-Verlag, Berlin Heidelberg, 1991), p. 25.
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and the direction of the electric field is determined by the Faraday law. The wave

is sustained by the additional polarization drift ~vpj = (mj/qjB
2
0)∂ ~E1/∂t and the

consequent Lorentz force jx~ex × ~B0 which is in the y-direction and has a proper

phase shift. The polarization drift introduces the ion inertia effects and if it is neglected,

then the Alfvén wave vanishes. The ~E × ~B term essentially describes the magnetic

field frozen-in property of the plasma.

• The mode fully described by the wave equation

∇×∇× ~E1 =
ω2

c2
~E1 +

iω

ε0c2
~j1, (1.1)

the momentum equations for ions and electrons

mini

[
∂~vi
∂t

+ (~vi · ∇)~vi

]
= eni

(
~E + ~vi × ~B

)
−miniνin(~vi − ~vn)

−miniνie(~vi − ~ve), (1.2)

mene

[
∂~ve
∂t

+ (~ve · ∇)~ve

]
= −ene

(
~E + ~ve × ~B

)

−meneνen(~ve − ~vn) −meneνei(~ve − ~vi), (1.3)
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and the corresponding equation for neutrals

mnnn

[
∂~vn
∂t

+ (~vn · ∇)~vn

]
= −mnnnνni(~vn − ~vi) −mnnnνne(~vn − ~ve).

(1.4)

• Without collisions the energy flux of the Alfvén wave

Fid = min0v
2
i ca/2. (1.5)

vi = E1/B0 - the leading order ~E × ~B perturbed ion velocity. Using the Faraday

law E1 = ωB1/k, hence vi = caB1/B0. For the estimate only, we assume small

perturbations of the magnetic field, viz. around 1 percent. For the photosphere at

h = 250 km, this yields ca = B0/(µ0ni0mi) = 1.3 · 105 m/s. Consequently, the

perturbed plasma (ion) velocity is vi = 10−2ca = 1.3 · 103 m/s. The wave energy

flux in the ideal case, and for mi = mp, becomes Fid = 5.3 · 102 J/(m2s).

• Collisions may heavily alter the motion of the perturbed electron and ion fluids. The

plasma response to the electromagnetic (Alfvén-type) perturbations in fully and weakly

ionized plasmas is essentially different from various points of view.

• The collision frequencies (in Hz) and magnetization of electrons and protons in the
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photosphere for the magnetic field B0 = 10−2 T.

h [km] νin νii νen νei Ωi/νit Ωe/νet
0 1.6 · 109 5 · 107 1.3 · 1010 1.5 · 109 6 · 10−4 1.1 · 10−1

250 2.6 · 108 3.8 · 106 2.2 · 109 1.2 · 108 3.6 · 10−3 7.3 · 10−1

• It is believed that, due to the low temperature, the ions in the lower photosphere are in

fact mainly metal ions. Sen and White6 have assumed that the mean mass of these

metal ions is 35 a.u. In that case, due to the rather different masses of (metal) ions

and neutral (hydrogen) atoms, in calculating the collision frequency it is appropriate to

use a more accurate formula νmn = nn0σmn[mn/(mm+mn)][8κTm/(πµ)]1/2,

where the index m denotes the metal ion, n denotes the neutrals (hydrogen), and

µ = mmmn/(mm +mn) is the reduced mass. Taking the layer h = 250 km, we

find νmm = 6.4·105 Hz, νmn = 4·108 Hz, and Ωm = 2.7·104 Hz. Comparing to

protons the metal ions appear to be even less magnetized, i.e., Ωm/νm = 6.6·10−5,

where νm = νmm + νmn. At h = 0 km we have νmm = 1.2 · 107 Hz,

νmn = 2 · 109 Hz, and Ωm/νm ≃ 1.3 · 10−5.

6H. K. Sen and M. L. White, Sol. Phys., 23, 146 (1972)
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• Some facts:

1. From the ion momentum, the ratio of the Lorentz and the friction forces (for pre-

dominant ion-neutral collisions and in the case of initially unperturbed neutrals), is

Ωi/νin. For the given photospheric plasma this is ∼ 1/103.

2. Contrary to the case of fully ionized plasma where all particles in a volume element

move together due to the given electric field while still colliding with each other, in

the present case in the beginning only charged particles move due to the applied

electric field, while neutrals have a tendency of staying behind. If νin ≫ Ωi, ω,

each plasma particle collides many times within the theoretical gyro-rotation, or

within the assumed wave oscillation.

3. Contrary to the viscosity which is of primary importance for short scale processes,

the friction is more effective in the opposite limit, i.e., at smaller wave-numbers

(and also at larger wave-periods) an ion is subject to larger number of collisions

with neutrals within one oscillation period.

4. The motion of an un-magnetized charged particle depicted in Fig. 1.1.
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Figuur 1.1: The motion of a charged particle in non-magnetized plasma. Arrows denote the tangential direction
at the moment of collision when the particle switches to another gyro-orbit with a possibly different velocity
(indicated by different gyro-radius). A collision occurs after a very tiny fraction (largely exaggerated here) of the
gyro orbit has been traveled.
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Effects of neutrals

• Described in: Kulsrud and Pierce, ApJ 156, 445 (1969); Pudritz, ApJ 350, 195 (1990);

Haerendel, Nature 360, 241 (1992); De Pontieu and Harendel, Astron. Astrophys.

338, 729 (1998); Pécseli and Engvold, Sol. Phys. 194, 73 (2000).

a) For a relatively small amount of neutrals (or for short wavelengths) the damping

proportional to the collision frequency νin, more collisions increases the friction.

b) In a weakly ionized plasma the collisions are numerous, the whole fluid moves

together. The stronger collisions the better locking of the gas-plasma fluid; the

damping of the wave (proportional to 1/νin) vanishes.

c) The Alfvén velocity in such a mixture includes the total fluid densitymini+mnnn.

The dispersion equation [De Pontieu and Haerendel (1998)]:

ω

k
= cA

(
1 − i

mnnn
mnnn +mini

ω

νni

)1/2

, cA =
B0

[µ0(mini +mnnn)]1/2
.

• We suggest the following item to be added in order to complete the physical picture:

d) the perturbed velocity of the gas-plasma mixture may be drastically reduced in a

weakly ionized plasma and, consequently, the wave energy flux becomes very small.
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Wave energy flux in strongly collisional plasma- application to photosphere

• Assume the same magnitude of the magnetic field perturbation as in the ideal case

discussed above: 1 percent. The perturbed magnetic field ⇒ the electric field ⇒
the consequent ion motion in the same direction as the perturbed vector ~B1. This

perturbed ~E × ~B-drift velocity of ions we denote by Vi. This velocity is the same for

electrons, and we are speaking about fluid velocities.

• The relaxation velocity of neutrals and ions can be obtained from the following. Assume

that in the starting moment the unit volume of the neutrals have a different velocity

Vn. In view of the huge difference in mass we neglect electrons for simplicity. The

collision frequency is extraordinary high, of the order of ∼ 109 Hz. Compare this with

the theoretical gyro-frequency for ions Ωi ∼ 106 Hz. The frequency ordering which

we have here is:

ω ≪ Ωi ≪ νi.

As a result, we can take the starting/maximal value of the ion velocity Vi and estimate

for the value it will take within the collisional time.

• The time dependence of the velocities of the two fluids (ions and neutral) in relative mo-
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tion is determined by the friction and it can be obtained from the simplified momentum

equations:

∂~vn/∂t = νni(~vi − ~vn), ∂~vi/∂t = νin(~vn − ~vi). (1.6)

• Simple combinations yield

~vn =
νin~Vn + νni~Vi
νin + νni

+

(
~Vn − ~Vi

)
νni

νin + νni
· exp[−(νin + νni)t], (1.7)

~vi =
νin~Vn + νni~Vi
νin + νni

−

(
~Vn − ~Vi

)
νin

νin + νni
· exp[−(νin + νni)t]. (1.8)

• The two velocities relax very quickly towards the first term on the RHS. Taking mi ∼
mn, and ~Vn = 0 ⇒ the relaxed (common) velocity for both species

vc = Vi
νni

νin + νni
= Vi

ni0
ni0 + nn0

≃ Vi
ni0
nn0

. (1.9)

• If ions start to move due to the electromagnetic force caused by the perturbations,

the strong friction results in a common velocity which: i) is much below the starting

velocity of the ion fluid, and ii) is achieved very quickly.
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Figuur 1.2: The relaxation of the ion and neutral velocities (normalized to vc = (νinVn + νniVi)/(νin + νni)) due
to collisions, for parameters appropriate for the solar photosphere. The initial velocities for neutrals and ions are
respectively 0 and 1.3 · 103 m/s.

• For the same perturbation of the magnetic field (1 percent), we have vc = 1.15 ·
10−4Vi = 0.15 m/s. Compare this to the velocity in the ideal case Vi = 1.3 ·
103 m/s. Note also that both Vi and vc are below/much below the sound velocity
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cs = 8.9 · 103 m/s, respectively. Hence, neglecting the pressure (compressibility)

effects is justified.

• The velocities of both neutrals and ions relax towards the same (normalized) value

(= 1) within a time interval which is many orders of magnitude shorter than the wave

oscillation period. As a result we have the flux in the weakly ionized plasma (for

mi = mp) given by

F =
1

2
(mini +mnnn)cAv

2
c = Fid

(
mini

mini +mnnn

)3/2

. (1.10)

• For the given parameters in the photosphere this gives

F ≃ 10−6 · Fid = 5.3 · 10−4 J/(m2s). (1.11)

• Actual flux is always small for any realistic amplitude of perturbations. Regardless of

the physical mechanism for eventual excitation of the Alfvén waves in the photosphere,

the expected amplitude of the perturbed velocity is such that the energy flux of the

waves is about one million time smaller than the one obtained from the models that

ignore the effects of collisions and the weak magnetization of plasma species.
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• The estimated flux presented above is obtained formi = mp. Takingmi = 35mp we

obtain onlyF = 0.02 J/(m2s). Assuming in addition a stronger magnetic perturbation

of 10 percents, we obtainF = 2 J/(m2s) and the common velocity amplitude vc ≃ 9
m/s. The actual flux may have larger values, e.g. due to stronger magnetic field

perturbations, but the linear wave theory becomes unapplicable.
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Discussion

I. Standard estimates of the wave energy flux through the solar photosphere assume

a plasma velocity in the photosphere of the order of 1 km/s. This implies two

effects. First, that plasma particles move with the observed speed of the convective

motion, and, second, that the motion of plasma species involves the magnetic field

perturbations due to frozen-in magnetic field effect. The first effect is only partly

satisfied. If in the equilibrium neutrals move perpendicular to the magnetic field,

say in the x-direction, the plasma particles will move also due to the friction effect.

• The ion drag velocity (in the x-direction) and the drift component (in the y-

direction) become, respectively,

vi0,drag = vix0 =
1

1 + Ω2
i/ν

2
in

vnx0, (1.12)

vi0,drift = viy0 = −
νin
Ωi

vnx0

1 + ν2
in/Ω

2
i

= −
Ωi
νin

vi0,drag. (1.13)
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• The corresponding electron components are

ve0,drag=vex0=αevnx0
νe
Ωe



νen
Ωe

+
νei
Ωe

(
1 +

ΩeΩi
νeνin

)(
1 +

Ω2
i

ν2
in

)−1


 ,

(1.14)
and

ve0,drift = vey0 = αevnx0
νen
Ωe



1 +
νei
νen

(
1 −

Ωiνe
Ωeνin

)(
1 +

Ω2
i

ν2
in

)−1


 .

(1.15)

αe,i =
1

1 + ν2
e,in/Ω

2
e,i

, νe = νei + νen.

• The induced ion and electron velocities are not necessarily equal, implying the

presence of equilibrium currents. For the same parameters used in Table 1

and taking the neutral velocity of 500 m/s, at h = 250 km we have the drag

and drift velocities for electrons 315 and 240 m/s, respectively. The ion drag

velocity is almost equal to the neutral velocity. This all is due to the fact that
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the plasma particles are un-magnetized, Ωi/νi = 3.6 · 10−3, Ωe/νe = 0.76.

However, due to the same reason the frozen-in condition is far from reality and

the ion/electron motion perpendicular to the magnetic lines does not necessarily

involve the appropriate movement of the magnetic lines. The actual motions

develop as described in the previous section.

II. In view of the known theory7, an upwards propagating wave is very weakly

damped in the photosphere (the damping is proportional to 1/νin). This holds

provided that the wavelengths exceed a certain minimal value. However, it will in

fact be more strongly damped in the upper layers, e.g., in the chromosphere where

the amount of neutrals decreases but the damping is proportional to νin.

• Example, assuming the wave propagating towards the chromosphere, the dis-

persion equation is solved for several wavelengths λ, with all collision fre-

quencies included8, at the altitude h = 1065 km where T = 6040 K,

nn0 = 1.71 ·1019 /m3, n0 = 9.35 ·1016 /m3, and at the altitude h = 1990 km

where T = 7160 K, nn0 = 1017 /m3, n0 = 3.9 · 1016 /m3.

7R. Kulsrud and W. P. Pierce, Astrophys. J. 156, 445 (1969)
8J. E. Vernazza, E. H. Avrett, and R. Loeser, Astrophys. J. Suppl. 45, 635 (1981)
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Tabel 1.1: Parameters of waves propagating through the chromosphere for two different altitudes.
h = 1065 [km]

λ [km] ω kca ωi/ωr
0.1 311 − 1222i 44855 3.9

1 327 − 45i 4485 0.14

10 33.1 − 0.45i 448.5 0.014

100 3.3 − 0.0045i 44.85 0.0014

500 0.66 − 0.0002i 8.97 0.0003

h = 1990 [km]

λ [km] ω kca ωi/ωr
0.1 69666 − 732i 69829 0.01

1 6891 − 722i 6983 0.1

10 371 − 94.5i 698.3 0.25

100 36.4 − 0.9i 69.8 0.025

500 7.3 − 0.04i 14 0.005

• Shorter wavelengths are more damped at lower altitudes. In the same time,

longer wavelengths (i.e., those that are presumably better transmitted by the

photosphere) are in fact more damped at higher altitudes. However, this trend

certainly can not continue because neutrals vanish at still higher altitudes.

• We stress that the equilibrium parameters change with the altitude and for the

large wavelengths the model becomes violated. A numerical approach should

give more reliable results.
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• Resume:

- The ions and electrons in the photosphere are both un-magnetized, collision fre-

quency with neutrals much larger than the gyro-frequency. Afvén-type perturba-

tions involve the neutrals. The consequences: i) In the presence of perturbations

the whole fluid (plasma + neutrals) moves; ii) The Alfvén velocity includes the total

(plasma + neutrals) density ⇒ considerably smaller compared to the collision-less

case; iii) The perturbed velocity of a unit volume, which includes both plasma

and neutrals, much smaller compared to the ideal case; iv) The wave energy

flux through the photosphere becomes orders of magnitude smaller, compared to

the ideal case, when the effects of partial ionization and collisions are taken into

account consistently.

• More details in:

- Vranjes, Poedts and Pandey, Phys. Rev. Lett. 98, 049501 (2007)

- Vranjes et al., Energy flux of Alfvén waves in weakly ionized plasma, Astron. Astro-

phys. submitted 2007
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Drift-Alfv én wave

• Magnetic field in the z-direction, B0~ez, and an equilibrium plasma density that has a

gradient in the perpendicular direction. Low-frequency perturbations ∂/∂t≪ Ωi.

• The momentum equations for ions and electrons are

mini

[
∂~vi
∂t

+ (~vi · ∇)~vi

]
= eni

(
−∇φ−

∂Az
∂t

~ez + ~vi × ~B

)

−κTi∇ni −∇ · Πi −miniνi~vi, (1.16)

mene

[
∂~ve
∂t

+ (~ve · ∇)~ve

]
= −eni

(
−∇φ−

∂Az
∂t

~ez + ~ve × ~B

)

−κTe∇ne −∇ · Πe −mene(νe~ve − νei~vi). (1.17)

• The parallel electron dynamics described by

(
∂

∂t
+ ~ve0∇⊥

)
Az1 +

∂φ1

∂z
−
κTe
ne0e

∂ne1
∂z

−
meνe
µ0e2ne0

∇2
⊥Az1 = 0. (1.18)



Drift-Alfvén wave 1-25

ve0 - the equilibrium electron diamagnetic drift velocity; Ampère law used ∇× ~B =
µ0
~j yielding ene0µ0vez1 = ∇2

⊥Az1.

• The electron continuity becomes

∂ne1
∂t

+
1

B0
(~ez ×∇⊥φ1) · ∇⊥ne0 +

1

µ0e

∂

∂z
∇2
⊥Az1 = 0. (1.19)

• The ion perpendicular motion described by the recurrent formula

vi⊥ = αi

[
1

B0
~ez ×∇⊥φ +

v2
T i

Ωi
~ez ×

∇⊥ni
ni

−
νi
Ωi

∇⊥φ

B0

−
νiv

2
T i

Ω2
i

∇⊥ni
ni

+ ~ez ×
∇⊥ · Πi
miniΩi

+
1

Ωi

(
∂

∂t
+ ~vi⊥ · ∇⊥

)
~ez × ~vi⊥

−
νi
Ωi

∇⊥ · Πi
eniB0

−
1

Ωi

νi
Ωi

(
∂

∂t
+ ~vi⊥ · ∇⊥

)
~vi⊥

]
. (1.20)

Here αi = 1/(1 + ν2
i /Ω

2
i ).
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• Eq. (1.20) is used in the ion continuity equation to calculate the terms∇⊥(ni~vi⊥). The

procedure is straightforward except for the term with the convective derivative in the

polarization drift ~vp, i.e., (~vi⊥ ·∇⊥)~ez×~vi⊥, and the stress tensor contribution ~vπ.

For a small equilibrium density gradient, the last~vi⊥ in ~vp from (1.20) comprises only

the leading order perturbed ~E × ~B and diamagnetic drifts (~vE1 and ~v∗i1), while the

first ~vi is the equilibrium ion diamagnetic drift ~vi0 = κTi~ez ×∇⊥ni0/(eB0ni0) =
−~ve0Ti/Te. On the other hand, the stress tensor part after a few steps yields

∇⊥ · (n~vπ) = −ρ2
i∇⊥ni0 · ∇

2
⊥~vi⊥ − ni0ρ

2
i∇

2
⊥∇⊥ · ~vi⊥

= −ρ2
i∇⊥ni0 · ∇

2
⊥~vi⊥ +

ρ2
ini0
Ωi

∂

∂t
∇4
⊥

(
φ1

B0
+
v2
T i

Ωi

ni1
ni0

)
. (1.21)

The first term in this expression, within the second order approximation limit, cancels

out with the term (~vi0 ·∇⊥)~ez×~vi⊥ from the above discussed convective derivative

in the polarization drift which appears in ∇⊥ · (ni~vp). The second term in Eq. (1.21)

is the FLR contribution.

• Another similar FLR term is obtained from the time derivative part of ∇⊥ · (ni~vp)
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reading

−ni0ρ
2
i
∂

∂t
∇2
⊥
eφ1

κTi
− ρ2

i
∂

∂t
∇2
⊥ni1, ρi = vT i/Ωi, v2

T i = κTi/mi. (1.22)

• The ion continuity equation finally yields

∂

∂t

(
ni1
ni0

)
+

1

B0
~ez ×∇⊥φ1 ·

∇⊥ni0
ni0

− νini0ρ
2
i∇

2
⊥

(
eφ1

κTi
+
ni1
ni0

)

−ni0ρ
2
i
∂

∂t
∇2
⊥

(
eφ1

κTi
+
ni1
ni0

)
+
ρ2
ini0
Ωi

∂

∂t
∇4
⊥

(
φ1

B0
+
v2
T i

Ωi

ni1
ni0

)
= 0. (1.23)

• The two continuity equations combined using the quasi-neutrality
(
∂

∂t
+ νi

)
∇2
⊥φ1 + c2a

∂

∂z
∇2
⊥Az1 +

κTi
en0

(
∂

∂t
+ νi

)
∇2
⊥n1

−ρ2
i
∂

∂t
∇4
⊥

(
φ1 +

κTi
en0

n1

)
= 0. (1.24)

The given set of equations (1.18), (1.19), and (1.24) will be used in the description

of the drift-Alfvén waves in collisional plasmas with hot ions.
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Waves in unlimited plasma

• In Cartesian geometry, for perturbations ∼ exp(−iωt + ikyy + ikzz):

ω3 − ω2

[
ω∗e + ω∗i − i

(
δ +

νi
1 + k2

yρ
2
i

)]

+ω

{
ω∗eω∗i −

k2
zc

2
a

1 + k2
yρ

2
i

− k2
yk

2
zc

2
a(ρ

2
s + ρ2

i ) −
νiδ

1 + k2
yρ

2
i

−i

[
ω∗iδ +

νi(ω∗e + ω∗i)

1 + k2
yρ

2
i

]
+
ω∗ek

2
zc

2
a

1 + k2
yρ

2
i

+
ω∗iνiδ

1 + k2
yρ

2
i

}

+i
νi

1 + k2
yρ

2
i

[
ω∗eω∗i − k2

zc
2
ak

2
y

(
ρ2
s + ρ2

i

)]
= 0. (1.25)

Here, ω∗e = kyve0, ve0 = −κTeκ0/(eB0), κ0 = n′0/n0, ω∗i = kyvi0,

vi0 = κTiκ0/(eB0), δ = meνek
2
y/(µ0n0e

2).

• In the collision-less limit and for Te > Ti, and after the expansion (1 + k2
yρ

2
i )
−1 ≃

1 − k2
yρ

2
i , Eq. (1.25) yields the drift-Alfvén mode derived earlier by using the kinetic
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theory9

ω3 − ω2(ω∗e + ω∗i) − ω[k2
zc

2
a − ω∗eω∗i + k2

zc
2
ak

2
yρ

2
s]

+k2
zc

2
a(ω∗e + k2

yρ
2
sω∗i) = 0.

• In the limit of small kyρs it reduces to

(ω − ω∗e)[ω
2 − ωω∗i − k2

zc
2
a] = 0,

⇒ the electrostatic drift wave and accelerated and retarded Alfvén waves:

ω1 = ω∗e, ω2,3 =
1

2



ω∗i ± ω∗i

(
1 +

4k2
zc

2
a

ω2
∗i

)1/2


 . (1.26)

• For small kz the two latter waves become10

ω2 ≃ ω∗i ≡ −
ω∗eTi
Te

, ω3 =
k2
zc

2
a

|ω∗i|
. (1.27)

9J. Weiland, Collective Modes in Inhomogeneous Plasmas (Institute of Physics Pub., Bristol), 2000
10 N. A. Krall and A. W. Trivelpiece, Principles of Plasma Physics (McGraw-Hill Kogakusha, Tokyo, 1973),

p. 212
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Hence, the actual frequencies of the modes in a hot plasma with density gradients in

the direction perpendicular to the magnetic field lines, may become very different from

the frequencies of the standard Alfvén modes propagating in opposite directions, i.e.

±kzca. This fact should be taken into account in fitting observations into the modeling

of solar coronal plasmas.

• In the limit of negligible ion thermal effects

ω3 − ω2ω∗ − ωk2
zc

2
a(1 + k2

yρ
2
s) + ω∗k

2
zc

2
a + iνek

2
yλ

2
eω

2 = 0. (1.28)

- in the absence of a density gradient this yields a damped kinetic-Alfvén mode

(Vranjes et al., Planet. Space Sci. 54, 641 (2006).

- in the limit ω2 ≪ k2
zc

2
a we have a standard unstable drift mode (Vranjes and

Poedts, Phys. Lett. A 348, 346 (2006) with frequency ωr = ω∗e/(1 + k2
yρ

2
s) and

increment ωi = νeω
2
∗ek

2
yρ

2
s/(k

2
zv

2
Te). The instability: a common effect of the

electron collisions νe, the finite ion mass effect (the term k2
yρ

2
s), and the equilibrium

density gradient (the term ω∗e).

- the two modes are coupled even without collisions, when (ω−ω∗e)(ω
2−k2

zc
2
a) =

ωk2
zc

2
ak

2
yρ

2
s; the coupling vanishes in the limit of negligible k2

yρ
2
s, i.e., for the case
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of the drift and the non-dispersive Alfvén modes.

- in order to have an electromagnetic drift-Alfvén mode distinguishable from the ion

sound mode, the scales along the magnetic field should be much larger compared

to those in the perpendicular direction. Hence, to have a reasonable coupling

between the drift and kinetic-Alfvén part, and negligible parallel ion dynamics,

kyρs should not be too small, and the parallel wave-length must satisfy11

λz >
2π

kyρs
Ln, (1.29)

otherwise, we would in principle have a threshold for the instability of the drift mode,

viz.ωr > kzcs. Here,Ln is the characteristic scale length for the inhomogeneous

density. The condition (1.29) can be satisfied even under laboratory conditions

and especially in the present solar plasma case with very large vertical scales.

In the same time, the omitted electron inertia effects imply vTe > ca, which is

equivalent to the plasma β > me/mi and to the limit which requires the inclusion

of electromagnetic effects12.
11R. J. Goldston and P.H. Rutherford, Introduction to Plasma Physics, (Institute of Physics Pub., Bristol,

1995), p. 376
12J. Weiland, Collective Modes in Inhomogeneous Plasmas (Institute of Physics Pub., Bristol, 2000
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• The character of the solutions may be understood even without directly solving the dis-

persion equations, by using the generalized Hurwitz method for a general polynomial

of the degree m and with complex coefficients13:

xm + (a1 + ib1)x
m−1 + . . . + (am + ibm) = 0,

Construct the sequence of m + 1 numbers c0 = 1, c1 = a1, . . ., cr, . . ., where r
goes to m, and where

cr = (−1)r(r−1)/2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 1 0 0 0 ·
−b2 −b1 a1 1 0 ·
a3 a2 b2 b1 a1 ·
−b4 −b3 a3 a2 −b2 ·
a5 a4 b4 b3 a3 ·
· · · · · ·
· · · · · ·

a2r−1 a2r−2 b2r−2 b2r−3 a2r−3 ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

• The number of roots with positive real parts equals the number of sign changes in the
13 D. L. Giaretta, Astron. Astrophys., 75, 237 (1979)
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sequence cj . A sufficient instability condition is that any of the cr has a negative

sign. As a simple check, we apply the method on Eq. (1.28). Here, we find c0 = 1,

c1 = −ω∗, c2 = −ω2
∗k

2
zk

2
yc

2
aρ

2
s < 0, c3 = c4ak

4
zω

3
∗(δ

2 + c2ak
4
yk

2
zρ

4
s) > 0.

Consequently, we have two sign changes in the sequence cj , i.e., two positive real

roots, and c1 and c2 are both negative, therefore, there exists at least one unstable

mode.

Application to solar corona

• Full d.e. solved numerically by taking parameters typical for the quiet inner solar

corona, viz. Te = Ti = 1.5 · 106 K, ne0 = ni0 = 1014 m−3, and taking B0 =
10−3 T. Neutrals absent, the dominant collisions between electrons and ions, νei ≃
2.1 Hz, νii ≃ 0.07 Hz, cs = 1.11 · 105 m/s, ca = 2.18 · 106 m/s, vTe =
4.77 · 106 m/s, β = 0.0052 > me/mi = 0.00054.

• The behavior of the modes in terms of the parallel wave-number kz is presented in

Fig. 1.3 for Ln = 103 m and λy = 50 m, while kyρs = 0.15. We thus have a

situation similar to that described by Eq. (1.26), i.e., two (retarded and accelerated)

damped kinetic-Alfvén modes, lines a and b, respectively, and an electrostatic drift

mode (line c). The increment of the drift mode (multiplied by 103) is presented by line
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Figuur 1.3: Left: frequencies ωr and increment ωi of electromagnetic the drift-Alfvén perturbations with the effect
of the coupling between the Alfvén (lines a and b) and drift (line c) parts. Dotted lines denote ±kzca. The increment
of the electrostatic drift mode (multiplied by 10

3) has a maximum in the region where the retarded kinetic-Alfvén
mode and the drift mode change their identities (denoted by arrow). Right: Frequencies ωr and increment ωi of
the drift-Alfvén perturbations in terms of the coupling term kyρs. The drift wave increment (line d) is multiplied by
10

3. Dotted lines denote |kzca| = 34.3 Hz.

d. The drift mode is unstable in the whole range of wave-numbers. Its frequency is

nearly constant for large values of kz. In the area denoted by the arrow, the retarded

kinetic-Alfvén mode and the drift mode do not cross each other. Instead, they change

identities as typical for an ‘avoided crossing’. For observations, the low frequency

(small kz) domain is of particular importance as this parameter can be measured, i.e.
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Figuur 1.4: Left: the drift wave frequency (full line), and its increment multiplied by 100 (dashed line) in terms
of the density scale-length, corresponding to the Alfvén modes (right). Right: the frequency of the kinetic-Alfvén
modes corresponding to the drift mode (left), for the given coupling parameter kyρs = 0.52 and kzca = 34.3 Hz, in terms
of the density scale length.

spatially resolved. It is clearly seen in Fig. 1.3 that, in fact, this is the domain in which

the Alfvén mode frequency can be very different from what is expected or predicted

if the small-scale plasma inhomogeneity, which drives the drift mode, is neglected.

Here, for the given density scale length, the two frequency limits at kz → 0 are

±16.26 Hz. Clearly, the frequencies can be made arbitrary small by changing the

equilibrium density scale length LN .
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• The decrement of the Alfvén modes has also been calculated and, in general, the

accelerated mode b is less damped. Its damping rate changes between −3.5 ·
10−3 Hz at kz = 3.14 (in given units), and −1.1 · 10−3 Hz at kz = 0.5. The

damping rate of the decelerated mode a has a maximum absolute value of about

2.3 · 10−2 Hz.

• In Fig. 1.3 right we present the mode behavior in terms of the coupling term kyρs for a

fixed value of |kzca| = 34.3 Hz (presented by dotted lines). Note that at kyρs = 1
the frequencies of the two kinetic-Alfvén modes are around 127 and −131 Hz. Thus,

the actual frequencies may drastically differ from what is expected without the drift

mode.

• The drift mode frequency is normally proportional to 1/LN . However, due to the

coupling with the Alfvén modes, its behavior is also drastically changed. This is seen

in Fig. 1.4 where we fix kyρs = 0.52 and kz = 400 km. Here, contrary to what

may be expected, for small LN the mode vanishes and the decrement decreases.

This is again due to the identity change with the Alfvén mode. As a matter of fact, the

Alfvén frequency for the given numbers is constant kzca = 34.3 Hz and the KAWs

frequencies (see Fig. 1.4) at largeLN do not change much. For a decreasingLN the
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drift mode curve does not intersect with the Alfvén mode. Instead, the Alfvén mode

takes over the behavior of the drift mode: it grows while the drift mode decreases.

• Note that, for the given parameters, the drift curve changes its direction at frequencies

around 12 Hz. This is still far enough from the requirement of a small parallel wave-

phase velocity in comparison with the electron thermal velocity used in order to omit

the electron inertia. Here, we have kzvTe = 75 Hz. Thus, the inclusion of the

electron inertia terms is not expected to considerably change the mode behavior.

• A similar sort of identity change of the drift-Alfvén mode, known in the literature (Wei-

land 2000), happens also in the case when the ion parallel dynamics is retained,

and on the condition that ca > cs. In this case, the sound part of the drift mode is

disconnected and the parallel mode dependence goes along the line kzca.
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Application to solar chromosphere

• Eq. (1.25) is solved also for the quiet Sun parameters of the chromospheric plasma.

Here, starting from the altitude of about 2100−2200 km and below, the neutral atoms

concentration is higher compared to the ions concentration. Within the same range of

the parallel wave lengths as in the previous text, the frequencies of the Alfvén modes

and the drift mode become below 1 Hz, thus well within the limits of detection. Yet,

the ion-neutral collisions appear strong enough to damp all three modes in the given

wave length range. However, in this region the parameters change rapidly with the

altitude so that it has no sense to consider such long parallel wave lengths. Setting

T = 3.2 · 104 K, and nn0 = ni0 = 1.5 · 1016 m−3, it turns out that for a short

density scale LN ≃ 102 m, and for λy ≃ 10 m and λz ≃ 10 km, the drift mode

is highly unstable, with a frequency ωr ≃ 16 Hz and increment ωi ≃ 2 Hz. Here,

νin ≃ 2 Hz and νe ≃ 6 · 104 Hz.
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Eigen-modes in bounded plasma

• Global mode behavior in magnetic structures that are highly elongated along the mag-

netic field lines and localized in the perpendicular direction.

• Use

∇r,θ = ~er
∂

∂r
+
~eθ
r

∂

∂θ
, ∇2

r,θ =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
,

and consider perturbations of the form f̂ (r)exp(−iωt + imθ + ikz), where f̂ (r)
denotes the r-dependent amplitude and m the discrete poloidal mode number. In

the same frame we have ~v(e,i)0 = ∓~eθκTe,in
′
0/(eB0n0) = v(e,i)0(r)~eθ, n′0 =

dn0/dr, with the minus sign for electrons.

• The combined electron dynamics equations (1.18) and (1.19) yield:


∇2
⊥ +

ωω2

c2ak
2
zρ

2
s

1 − iνeω
k2
zv

2
Te



 Âz1 −
1

kzc2a

ω
ρ2
s

+
mΩi
r
n′0
n0

1 − iνeω
k2
zv

2
Te

φ̂1 = 0, (1.30)
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where ω2 = ω − ve0(r)m/r, and ∇⊥ = ∂2/∂r2 + ∂/(r∂r) −m2/r2.

• The ion part can be discussed in two limits.

Negligible ion thermal effects

• From the combined continuity equations

∇2
⊥φ̂1 −

k2
zc

2
a

ω
∇2
⊥Âz1 = 0, (1.31)

• To decouple the equations assume n0(r) = N0exp(ar2/2), where a can be both

positive and negative, and r takes values between 0 and r0.

∇2
⊥

{[
∇2
⊥ −

ω/ρ2
s + amΩi

ω(1 − iδ1)
+
ω(ω + amκTe/eB0)

k2
zρ

2
sc

2
a(1 − iδ1)

]
φ̂1

}
= 0. (1.32)

or

∇2
⊥ψ(r) = 0, (1.33)

• Consequently[
∇2
⊥ −

ω/ρ2
s + amΩi

ω(1 − iδ1)
+
ω(ω + amκTe/eB0)

k2
zρ

2
sc

2
a(1 − iδ1)

]
φ̂1 = ψ(r), (1.34)
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and from Eq. (1.33) ψ(r) is

ψ(r) = 0, or ψ(r) = c1 cosh[mlog(r)] + c2 sinh[mlog(r)]. (1.35)

• Eq. (1.34) can be written in the form(
∂2

∂r2
+

1

r

∂

∂r
−
m2

r2
+ ξ2

)[
φ̂1 −

ψ(r)

ξ2

]
= 0, (1.36)

where

ξ2 =
ω(ω + ω0)

ρ2
s(1 − iδ)

(
1

c2ak
2
z
−

1

ω2

)
, ω0 = am

κTe
eB0

, δ =
νeω

k2
zv

2
Te

.

• The solutions: the Bessel functions of the first and the second kind, Jn(ξr) and

Yn(ξr), with a complex argument. Theorems of Lommel and Bourget14: if n > −1,

then the zeros of the Bessel function Jn(z) with the complex argument z are all real,

and, for n ≥ 0 the functions Jn(z) and Jn+s(z) have no common zeros other than

the origin, for all s > 0. Hence, for vanishing solutions at the boundary, we set that

ξr0 = εl where εl is the real l-th zero of the complex function Jn(ξr).
14G. N. Watson, A tretise on the Theory of Bessel Functions (Cambridge at the University Press, Cambridge),

pp. 482-485 (1962)
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• The dispersion equation for the radially bounded plasma
(
ω + am

κTe
eB0

)
(ω2 − k2

zc
2
a) = ωk2

zc
2
a
ε2l ρ

2
s

r20
(1 − iδ). (1.37)

• This is the equivalent to Eq. (1.28) in an unbounded plasma. Bothm and εl take given

discrete values. Eq. (1.37) describes the global drift-Alfvén wave, with an unstable

drift wave part. The poloidal (i.e. in the θ-direction) propagation is the consequence

of the drift mode which propagates perpendicular to both the magnetic field lines and

the density gradient. Combined with the given z-dependence, this gives the twisting

of the global modes. The twisting vanishes form = 0 when the two modes decouple.

The eigen-functions Âz1 can be easily found from Eq. (1.31), and n̂1 from Eq. (1.19),

which is rewritten as

n̂1 =
kz
µ0eω

∇2
⊥Âz1 −

m

r

n′0
ωB0

φ̂1. (1.38)

• Mode details are available in: Vranjes and Poedts, Phys. Plasmas 13, 032107 (2006).
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The hot ion case

• Ion thermal effects enter the equations through (1.22), the second term in (1.21), and

the collisions. Using Eq. (1.38) in (1.24) for the same Gaussian/inverse-Gaussian

density profile as before, we obtain an equation containing terms proportional to

ρ4
i∇

4
⊥φ̂1 and ρ6

i∇
6
⊥Âz1, which come from the second part of the stress tensor in

Eq. (1.21). This 6th-order differential equation is to be combined with the 2nd-order

Eq. (1.41) in order to decouple the two potentials. In the case of the global modes

studied here and, therefore, for large scales, we have |ρi∇⊥| < 1 and the high order

derivatives yield small terms that can be neglected. Hence, by omitting the stress

tensor contribution while still keeping the ion thermal effects through (1.22) and the

collisions, from the combined continuity equations:

∇2
⊥

{
φ̂1−

kzc
2
a

(ω + iνi)(ω −maρ2
iΩi)

[
ω − (ω + iνi)ρ

2
i∇

2
⊥

]
Âz1

}
=0.

(1.39)
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• This gives

φ̂1 =
k2
zc

2
a

(ω + iνi)(ω −maρ2
iΩi)

[
ω − ρ2

i (ω + iνi)∇
2
⊥

]
Âz1 + ψ(r), (1.40)

which is used in

∇2
⊥ +

ωω2

c2ak
2
zρ

2
s

1 − iνeω
k2
zv

2
Te



 Âz1 −
1

kzc2a

ω
ρ2
s

+
mΩi
r
n′0
n0

1 − iνeω
k2
zv

2
Te

φ̂1 = 0, (1.41)

⇒

(
∂2

∂r2
+

1

r

∂

∂r
−
m2

r2
+ η2

)
[Âz1 + cψ(r)] = 0. (1.42)

η2 =
[
ω(ω + iνi)

(
ω +maρ2

sΩi

)(
ω −maρ2

iΩi

)

−ωk2
zc

2
a

(
ω+maρ2

sΩi

)]{
k2
zc

2
a(ω+iνi)

[
ρ2
s(1−iδ1)

(
ω−maρ2

iΩi

)

+ ρ2
i (ω +maρ2

sΩi)
]}−1

, c =

(
ω +maρ2

sΩi
)

kzc2aρ
2
sη

2(1 − iδ1)
.
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• As earlier, the solutions are the Bessel functions of the first kind and the corresponding

dispersion equation reads

η2 =
ε2l
r20
. (1.43)

• In the cold ion limit, it reproduces Eq. (1.37). The solutions of Eq. (1.43) describe the

eigen-values of the global eigen-modes in the given cylindrical plasma. Eq. (1.43)

can be easily solved numerically for various harmonics by choosing the appropriate εl
andm. In the case of solar coronal magnetic structures, the density and the magnetic

field have higher values compared to the previous case,ni0 = ne0 = 1016 m−3 and

B0 ≃ 10−2 T, and the condition (1.29) now can be rewritten as 2π/(maρsλz) < 1.

Here, we have set κ0 ≡ n′0/n0 ≃ ar0. Taking as an example a magnetic column

with the diameter of 200 km and, in the case when the density at its edge is 0.1 of

its value at the column axis, we get a ≃ 7 · 10−10 m−2, and therefore, the poloidal

mode number m takes very high values ∼ 105.
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Resume:

- The stability discussed of the drift-Alfvén wave in unbounded and bounded, collisional

solar plasmas, including the effects of hot ions and a finite ion Larmor radius. The

density gradient + the electron collisions with heavier plasma species⇒ the instability

of the electrostatic drift mode which is coupled to the dispersive Alfvén mode.

- The exchange of identity between the electrostatic and electromagnetic modes ⇒ the

frequency of the electromagnetic part of the mode becomes very different compared

to the case without the density gradient.

- In the application to the magnetic structures the complex eigen-modes and the cor-

responding complex discrete eigen-frequencies in cylindric, radially inhomogeneous,

collisional and bounded plasma derived and discussed.

- the dispersion equation involves a discrete poloidal mode number, and eigen-functions

in terms of Bessel functions with discrete zeros at the boundary.

- the problem is doable analytically even if some realistic physical effects (geometry,

collisions) are included.

More details in: Vranjes and Poedts, Astron. Astrophys. 458, 635 (2006).
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Plasmas 12, 064501 (2005).

- D. Petrovic, J. Vranjes and S. Poedts, Analysis of waves in strongly collisional photo-

spheric plasma, Astron. Astrophys. 461, 277 (2007).

- H. Saleem, J. Vranjes, and S. Poedts, Unstable drift mode driven by shear plasma flow

in solar spicules, accepted to Astron. Astrophys. (2007)




