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Why (and when) particle-in-cell (PIC) simulations?

• Particle-in-cell / Vlasov codes can address all collisionless plasma processes

• Such codes can be used to verify linearized plasma dispersion relations

• The plasma dynamics can be followed through its non-linear phase

• PIC simulations have an ’unlimited’ dynamical range for the particle ve-
locities and no boundary conditions along v

• PIC codes have a limited signal-to-noise ratio and phase space density
resolution

• PIC schemes parallelize well
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What do PIC / Vlasov codes solve?

∇× E = −∂B

∂t
(1)

∇× B = µ0ε0
∂E

∂t
+ µ0J (2)

∇ · B = 0 (3)

∇ ·E = ρ/ε0 (4)

Vlasov equation for phase space distribution f(x,v, t)

∂f

∂t
+ v · ∇xf +

q

m
(E + v × B) · ∇vf = 0 (5)

ρ(x, t) = q

∫
∞

−∞

f(x,v, t) dv, J(x,v, t) = q

∫
∞

−∞

vf(x,v, t) dv (6)
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Numerics / Principle

Field equations

Replace continuous fields B(x, t), E(x, t) and Maxwell’s equations by their dis-
cretized counterparts.

(1) Introduce finite spatial resolution x → j∆x and finite time resolution t →
j∆t, with integer values j.

(2) Replace differential operators by difference operators.
Example: d

dx
f(x) → (f [(j + 1)∆x] − f [j∆x])/∆x.

⇒ Replaces differential equations by algebraic equations.

Particle equations (PIC codes only)

Replace continuous probability distribution by phase space elements

f(x,v, t) ⇒
N∑

i=1

S(x − xi)δ(v − vi), (7)

where S(x) is a shape function, e.g. a triangle.

⇒ Replaces phase space probability function by ’computational particles’.
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Phase space distribution: Maxwellian distributions are often used.

Quantitatively different results are sometimes obtained with Vlasov codes (upper
phase space distribution) and PIC codes (lower phase space distribution)!

• If particle weights are equal, the statistical representation of the plasma
close to the mean speed of the species is good.

• The statistical representation is poor, if |v − v̄| ≥ 2vt for a Maxwellian

exp (−(v − v̄)
2
/ 2 v2

t ).
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Particle-grid interaction

X X X Xi i+1 i+2 i+3

Field
Node

Field
Node

Particles

• The fields are defined on a grid (Field nodes).

• The particles move on ’continuous’ paths.

• Particles interact with the grid through ρ and J.

• The grid interacts with the particles through E and B.

⇒ Interpolation schemes must be specified
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• A computational electron is located between the cells i, i + 1 with the
positions Xi and Xi+1.

• It has the distance D1 from Xi and D2 from Xi+1.

• Electron charge Q is assigned to the grid nodes i, i + 1:

Ci = f1(D1, D2) and Ci+1 = f2(D1, D2).

• Example: Ci = Q D2 and Ci+1 = Q D1 if (Xi+1 − Xi) = 1.

CI C I+1

X XX

D1 D2

C CI I+1

i i+1

Electric field E

E
Electron

Electron

Force

• Calculate potential Φ with ∇2Φ = −ρ/ε0 with ρi ∼ Ci and ρi+1 ∼ Ci+1.

• E = −∇Φ.

• Interpolate E to particle position: E(x) = D2 · E(xi) + D1 ·E(xi+1)
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1. Initialize plasma phase space distribution:

− Place particles in space according to density

− Initialize velocities with random numbers

2. Initialize E and B fields

3. From E,B fields calculate acceleration

4. Multiply acceleration with time step

−> Velocity increment

−> Position increment

6. From new positions and velocities:

Calculate new E,B

5. Multiply velocity with time step
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Limitations:

Known limitations with known consequence: Field discretization

• Spatial step ∆x ≈ Debye length λd = vt/ωp.

• Numerical stability → small time step ∆t.
For my code: ∆t = Nc∆x/

√
2 c with 0 < Nc < 1.

• We have ∆x = vt/ωp and for Nc = 1 we get
√

2∆tωp = vt/c.
⇒ Low vt requires high sampling rate. Critical speed vt ≈ 106m/s.

Known limitations with unknown consequence:

Particle per cell count rates follow Poisson statistics → For Ne particles per cell,
the relative fluctuations are 1/

√
Ne.

• Fluctuations result in particle-wave collisions.

• Parametric instabilities speed up.

• Dispersive properties change. Bernstein modes are damped ’close’ to nωc.

• Signal-to-noise ratio is low.
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Spatial grid effects

In ’continuous infinite plasmas’: Fourier integral

Infinitely extended and continuous position x and wavenumber k domains.

f(x) ⇔ g(k) (8)

f(x) =

∫
∞

−∞

g(k) exp (ıkx) dk (9)

g(k) =
1

2π

∫
∞

−∞

f(x) exp (−ıkx) dx (10)
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In ’continuous confined plasmas’: Fourier series

Limited position 0 < x < L, f(x) continuous. Unlimited, discrete k spectrum.

f(x) ⇔ gk = g(kk) (11)

f(x) =

∞∑
k=−∞

gk exp (ı kk x) (12)

gk =
1

L

∫ x=L

x=0

f(x) exp (−ı kk x) dx (13)

Periodicity of exp (ı ki x) → The f(x) is periodic, but not gi.
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In ’PIC plasmas’: Discrete Fourier transform

The PIC code cannot represent a Fourier series → The k-spectrum is truncated.

fn = f(xn) ⇔ gk = g(kk) (14)

fn =

N−1∑
k=0

gk exp (2πıkn/N), n = 0, ..., N − 1 (15)

gk =
1

N

N−1∑
n=0

fn exp (−2πıkn/N), k = 0, ..., N − 1 (16)
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Finite grid instability

• Phase space distribution has rapid oscillations: F (ks, x) = sin (ksx) .

• Grid imposes a maximum kNy = π/∆x.

• A box with length L has the minimum kM = 2π/L.

(a) k1 = kNy/25 and k2 = kNy/100. Integer values for k1/kM and k2/kM .
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(b) k1 = kNy/25.25 and k2 = kNy/100.25. Non-integer k1/kM and k2/kM .
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Wave oscillation is well-resolved.

Finite-box effects ’fill up’ the k-spectrum: power leaks to other k (aliasing).
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(c) k1 = kNy/2 and k2 = 3 kNy/2. Integer values for k1/kM and k2/kM .
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Peaks are identical in power but have different phases.
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Some consequences:

• The aliasing is introduced by mapping oscillations with an ’unlimited’
k−spectrum onto a grid with |k| < kNy.

• Case (3) showed that k1, k2 with k1 − k2 = kNy differ only in phase.

• Truncated Fourier series → forced periodicity in x and k.

Signals with k1 and k2 differing by 2 kNy can’t be distinguished!

• Relation to crystals / metals: Brillouin zones

• First Brillouin zone |k∆x| < π. Other zones differ by 2 kNy = kg =
2π/∆x.

• In PIC simulations, elementary sine waves are actually not (!) eigenfunc-
tions of the system.
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Finite grid instability

Counterstreaming two-stream instability

1 − ω2
p

ω2
=

Ω2
b

(ω − kvb)
2 +

Ω2
b

(ω + kvb)
2 (17)

• Physical resonance term: ω − kvb = 0

• Aliasing: ω − (k + pkg)vb = 0, with integer p.

• The term kgvb has the dimension of a frequency. It is the grid crossing
frequency ωg of the particle beam.

• The beam drives many resonances
(ω−p ωg)

k
= vb. Only p = 0 is physical.

• Consequence: In non-relativistic 1D simulations with k ‖ vb the nonphys-
ical instabilities are electrostatic and only heat the beam → Harmless.
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Finite grid instability of relativistic beams in 2D

• The phase speeds of the waves are ω
k

= vb + p
ωg

k
.

• For speeds 1 − ε < vb/c < 1 and ε � 1, a p �= 0 introduces superluminal
waves that couple directly to the beam. The resonance is sharp.

• Particle oscillations due to a wave with k ‖ vb couple through γ to other
velocity components.

Quiver motion acts as antenna!

• In 2D/3D simulations, obliquely propagating electromagnetic waves couple
to the fast moving charge density modulation

⇒ Electromagnetic radiation similar to free electron laser.
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PIC simulation

• Spatially homogeneous system in x-y plane, periodic boundary conditions.

• Initially, E = 0 and B = (0, 0, B0) with eB0/me = Ωp/10 (Ωp = plasma
frequency).

• Bulk electrons and protons at rest, number densities ne and np.

• Counter-streaming proton beams with velocity vector ±(vb, 0, 0) and vb =
0.8 c. Beam density: nb each. Both beams differ in their temperature.

• ne = np + 2 nb.

• Rectangular simulation box, sidelength = 6 π vb / Ωp. Resolved by a 1200×
1200 mesh.

• The system is advanced in time for tΩp = 194.
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Results 1:

• Left plot, upper row: 10-logarithmic wavenumber (power) spectrum of
physical wave. vb is parallel to the x-axis.

• Right plot, upper row: 10-logarithmic wavenumber (power) spectrum of
grid instability waves.

• Left plot, lower row: Low-pass filtered |Ex + ıEy| in a rectangular sub-
interval with the side length 2 π vb/Ωp.

• Right plot, lower row: |Ex + ıEy| in a rectangular sub-interval with the
side length π vb / 2 Ωp.
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Results 2:

• Two straight lines going through k = 0, Ω = 0: Beam dispersion relation.

• Two curved lines going through k = 0, Ω = 0 (on this scale): Light modes.

• Straight line at large Ω parallel to the lower beam dispersion relation:
Sideband separated from beam mode by grid crossing frequency.
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Discussion

• The particle-in-cell simulation method is currently the tool of choice for
the investigation of non-linear processes in kinetic, collision-less plasma.

• In contrast to fluid / magnetohydrodynamic codes, its resolution is set by
the plasma Debye length → it can not be scaled to fit best a problem.

• Its signal-to-noise ratio is limited by noise. Noise can introduce ’unknown’
modifications.

• The statistically poor representation of plasma by PIC simulations can give
different results compared to Vlasov simulations.

Example: Electron phase space holes can be more stable in Vlasov simu-
lations: Dieckmann, Eliasson, Stathopoulos, Ynnerman, Phys. Rev. Lett.
92, 065006 (2004)

• The finite grid instability turns out to be a severe simulation constraint
for the investigation of relativistic plasma flows. It can be reduced only
moderately by finer grids.

Dieckmann, Frederiksen, Bret, Shukla, Phys. Plasmas 13, 113110 (2006).




