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Beam-plasma interaction

Conventional approach:
Linear instability

Growth rate and the stage of exponential
growth

'r
E = FE,exp(—iwt + yt + ikr)
y =—Ime /(0 Ree/dw)
Saturation of the instability :

Wave-particle interaction or / and
nonlinear process in game



Beam plasma interaction in
homogeneous plasma (courtesy of
E. Marsch)

Electromagnetic waves can penetrate a plasma from outside, whereas
electrostatic waves must be excited internally. The simplest kinetic
mstability 1s that of an electron beam propagating on a uniform background:
gentle beam or bump-on-tail confipuration:

3
wy = twpe (1 + Ekh?ﬂ) iy (k)




Beam plasma interaction in electron
foreshock region and in solar wind
(courtesy of E. Marsch)

foe(v) = fo(v) + fi(v — vy)
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Energetic electrons and type lll bursts
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Type Il and type lll radiobursts

September 24, 2001 event

[ & =
N 5 10 15 20
% 1 I} N intansity [dE) ralative o cosmic backaraund
o WIND RAD 2
=y
i1
=
7 WIND RAD 1
= 1
[N

0.1 ;

8:00 12:00 1600 20:00 O:00 E:00 1200 16:00 20:00 0:00
Time [GMT]

Figure 1. Combined measurements of tvpe IIl / tvpe II
bursts observed onboard Wind satellite (RAD 1 and
RAD 2 instruments) and bv IZMIRAN radio-telescope



Type lll EM waves and Langmuir waves
(courtesy of E. Marsch)

TYPE II RADIO ELECTRON PLASMA
ILLATIONS
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Bump on tail feature of electron distribution
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Contour map of the surface f(W,,
W_ ) obtained from a three
dimensional measurements of the
electron velocity distribution at the
electron foreshock boundary on
November 6 1977 at 15:39:41 — 44
UT. The reduced distribution f(W, )
(bottom) shows a bump on the tail at

W, = -7*10% cm/sec and the vertical
dached lines outline the elemental
strip of parallel velocity space
producing the positive slope [from
Fitzenreiter et al., 1984].



Electron flux events and waves
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Fig. 12. An expanded display of energetic electron fluxes and ISEE 1 plasma wave electric field data during
an electron flux event. Note how the more intense electron plasma oscillations tend to be associated with higher
fluxes of low-energy electrons. The electron plasma oscillations and low-frequency electrostatic waves are also
enhanced at gradients in the energetic electron density [from Anderson et al., 1981].



Why beams are around electron
foreshock ? (courtesy of Gedalin)

Electron and ion foreshock geometries

Tangential
Field Line @
Solar Wind Electron

Beam

In the de Hoffman-Teller frame one moves parallel to the schock surface
with a velocity vy, which transforms the upstream solar wind inflow
velocity into a velocity that 1s entirely parallel to the upstream magnetic
field. This velocity can be expressed by the shock normal unit vector. n.

Vew = VHT + vsu,” VHT — ﬁ X (VSLL) X Bsu_,w) /ﬁ . Bsw




Different possible variants

« QL saturation and plateau type particle
distribution formation (Vedenov, Velikhov &
Sagdeev, 1962, Drummond & Pines, 1962,
Romanov & Filippov, 1961)

Physical picture: diffusion of particles in
the field of many waves

Finite amplitude sinusoidal electrostatic
wave can trap the particle



Trapping of particles (courtesy of
E. Marsch)

Particle trapping in waves

One of the simplest nonlinear effects 1s rrapping of particles 1n large-amplhimide
waves, 1 which the wave potential exceeds the particle kinetic energv. Trapping
15 largest for resonant particles, which are moving at the wave phase speed and
see a nearly stationarv electrostatic potential:

d(r.t) = dgcos(kr — wt) = ¢ cos(kz’)

Here the coordinates were transformed into the wave frame by

r'=ax — (w/k)t

The particle speed 15 also transformed by

!
v —=v—w/k

The particle’s total energv in the wave frame 1s

T
1[,{:{_, — Err:.-.;:'u — e CDS(.I‘CI!)




Trapping of particles (courtesy of E.
Marsch)

Trajectories of trapped particles

When considering electron motion in iwe-dimenensional phase space (X', U'),
particles move along lines of constant energy W, as 1s shown below.

Untrapped Orbits
There appear to be two types of W; &y v
trajectories: I

T il

e S '-\_-'""'!

5““«_:"’-%
* closed trajectories with W, < 0, N e et

frapped particles NG N T
T e _h““ﬂ-..':_ | fﬂ-:.

: EPE" tl'ﬂjﬁtturies Wim W;I = ﬂ:- E"—-"ﬁ FH?IL _r’!ﬂ“”—l_.-ﬂ"‘- )

unitrapped particles Separairix Tﬁaﬁﬂ fh.-ms

The trapped particles bounce back and force between the potential walls and
oscillate periodically (expand the cosine potential) with the trapping frequency:

The larger the amplitude, &, o 2 1/2
the faster is the oscillation. wp = |egok/m)|




Quasilinear description
(courtesy of Marsch)

Perturbation theory

Nonlinear interaction can lead to stationary states consisting of large-amplitude
waves and related particle distributions of trapped and free populations. It 1s
difficult to find these states, and often perfurbation expansions are used,
leading to what 1s called weak plasma turbulence theory. Starting pomt 1s the
coupled system of Maxwell*s (which we do not quote here) and Vlasov‘s
equations, e g. for the s-component of the plasma.

s s A fs
vV fs E4+v=xB)- =0
ol + Jo TThs (5 + ) v

We split the fields and velocity distributions mto average slowly varving parts,
foo. Ep. and By, and oscillating parts, of. 6E and 6B, and assume that the long-
time and large-volume averages over fluctuations vanish, 1.e.

(0fs) = (o) = (6B) =0

Averaging the resulting Vlasov equation gives the evolution for £,. No
assumptions were vet made about the size of the fluctuations, but usually
they are assmmed to be much smaller than the background.




Quasilinear equation
(courtesy of E. Marsch)

Quasilinear theory

The Vlasov equation for the slowly-varying ensemble averaged VDF of species
s reads:

dfs0 s dfs0
at +V'sto+ms(VXB). ov
_ U a4 fs
= ‘E,(“E“”B* o)

Formally the perturbation series can, with the smallness parameter A, be

written as:

fo = fao+Afog +N20fun+ ...
SE = MNEq 4+ A\25Es + ...




Application to beam-plasma
instability (courtesy of E. Marsch)

Weak gentle-beam turbulence 1

The perturbation series 1s expected to converge rapidly, if A 15 small. Assume

Rk
\ — {FolﬁE(K.f)II ) <1
2{n)kp(T’)

Assume a gentle source of free energy 1n the form of a weak beam of electrons
crossing the plasma and consider the associated excitation of Langmur waves.
Remember that the linear complex frequency 1s:

QL‘:_} 1:_}_“ |Lf'=u.-'_,-"r.|tt'5

2 o ()
w(k) = wpe (1 + %kz.}n%‘j (k1) = wlk)—te 9 fop(v, 1)

Consequently, the electric field evolves in tume according to:

SE(k.t) = 6E(k.0) exp {— /Dt Tan T — i, dT}




QL approximation
(courtesy of E. Marsch)

Weak gentle-beam turbulence 11

Consequently, the average particle VDF wall also evolve in time according to:

8 fop(v,t) _

At

. 55@

Me dv

This quadratic correlation term can be calculated by help of Fourier
transformation of the Vlasov equation for the fluctuations, yielding:

Inserting the first in the
second gives a second-
order term. 8E(k. @)
GE(-k, -@), which gives
the wave power
spectrum . Hence we
arnve at the diffusion
equation for the beam
distribution, with the
general diffusion

coefficient:

SF(k) =1

e O0L(k) Ofop(v. i)

e w — kv Ao

Div, t) =

[6E (k)|

e
Re{——
i m?2 ZL: kv — w(k) + iy(k, t)

exp IE,ET(R"’T)“ET“




Diffusion equation in the velocity
space (courtesy of E. Marsch)

Diffusion equation
Through diffusion of particles in the wave field, the average VDF wall slowly

evolve in time according to: | ;
dfop(v.t) _ 0 O fop(v, ?‘-)]

— | (v, t
it e (v 1) i

This 15 a special case of a Fokker-Planck equation, typically arising n
quasilmear theory. The beam distribution will spread with tume in velocity
space under the action of the unstable Langmuir fluctuations. The resonant
denomunator may be replaced by a delta function giving:

e

3,
Wk, 03( — ko)
m2 .

By differentiation of the wave electric field, 0E(x. 1), we obtamn the
evolution equation of the associated spectral density as follows:

D(v,t) =

W (e 1)

ot = 27(k, D)Wk, 1)

This completes the quasilinear equations of beam-excited Langmuir waves.




Plateau as a result of QL diffusion
(courtesy of E. Marsch)

Plateau formation

The validity of the quasilinear equations v/w > Wiy /nokpTe
requires that '

Fortunately, the equations allow some clear insights into the underlying physics.
Inspection of the diffusion equation shows, that a steady final VDF occurs 1f

0 v, 00
1 D(v, 00) fOb‘( /> 0) =0
il ov
e This implies that the gradient
flattens and disappears, since
the spectrum 1s positive

definite, and the diffusion
coefficient 1s only zero if the
entire spectrum vanishes.

As a final result, a plateau will form by diffusion in velocily space.




Some estimates

W = 80E2 = %;7-7]‘\)2(](8 —ﬁ)’“')dv ~ nbﬂ'?VbAVb
0

d_opd
ot ov  ov

D =

.
0




Another possibilities for intense beams

Weak turbulence

a) decay instability

L->L+S

b) induced scattering on ions
Lo L+i

Strong turbulence: formation of
solitons and collapse



What is wrong with our models ?

ie?

Averaged Normalized Spectrum (km)

Marsch and Tu, JGE. 95, 8211, 1990

High-Speed
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Compressive fluctuations in the solar wind
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Possible density profile corresponding to
the spectra of fluctuations (Kellogg, 1999)
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Figure 1. A time series of density fluctuations réconstructed
from an averaged spectrum [Neugebauer, 1976]. The two
brackets at the left show the difference between the plasma fre-

quency and the resonant frequency for electron beams of 2 and
10 keV,



Critical parameters

What are the effects of inhomogeneity ?
Effect of wave propagation
 Critical parameter :

* dispersion versus density inhomogeneity,
usual assumption

An/n < 3Tk*/ mwﬁﬂ

* In this case there is no wave trapping
 what will be changed if it is not correct ?



Propagation effects

In the first case :

random diffusion of the wavevector of
the wave on the density fluctuations

In the second case :

a) variation of the wave amplitude due
to the variations of the k-vector, and

b) variation of the instability increment



Propagation effects
r k, roor
E(r,t)=E, m exp(i (k(r)-dr —iwt +fy(t)dt)

WKB wave propagation, even fory =0

o 1 energy flux constant

vk An/n ~103

Propagation to denser plasma results in
decrease of k — vector and increase of the wave
amplitude, but also in wave damping on thermal
electrons for HF waves



Nonhomogeneity effects

There can be two types of inhomogeneities

Let k-wavevector, q characteristic scale of « short
scale » inhomogeneity, and Q —of « large scale »
inhomogeneity

let the conditior
['Jv, < g < k.

is satisfied for « large scales » and
and the condition
Q<T/v, < qg<k

for « short scales »



Historical background

Clumping of Langmuir waves in type lll solar radio
burst sources (Gurnett, 1978, Smith, 1977)

No support for collapsing solitons (Smith, 1977)

Role of plasma inhomogeneities in suppression of
the linear instability due to removal of waves from
resonance (Melrose, 1980, Smith and Sime, 1979)

Density fluctuations are present in the solar wind
Neugebauer, 1975, 1976; Celniker et al., 1983, 1987



Historical background

Nishikawa & Ryutov, (1976) two physical effects
should be taken into account : angular diffusion on
the small amplitude density fluctuations and growth
rate

Notion of angular averaged increment

Muschietti et al., (1985), Breizman, Ryutov, 1980:
effect of the quenching of the instability due to
angular diffusion

Robinson (1995), stochastic growth rate, importance
of the analysis of PDF



Stochastic growth rate theory
(Robinson, 1995)

adw
dt

=0'W

G=ln(W/W,)

dG T
dt




Stochastic growth rate (3)

9, P(T',t) =9+ [kF (r -(I). )D(r, t)]+ %Drrairp(r, )
( C-(ro))

1
PI,t) = eXx

This theory is asymptotic and it is
based on the central limit theorem:

Number of regionds of growth and
damping should be very large



Basic model

» Similar to Nishikawa & Rytov
(1976)

* Two effects: angular diffusion and
linear growth rate / damping



Basic model

O<TI'/v, <<g<<k

1/gv, << At <<1/T,1/Qpv,
1/qg<<Ar<<v,/T',1/0

An/n<<k2T/mw;e~AN/n



Equation for the spectral energy density
of the Langmuir wave packet moving in
plasma with random inhomogeneities

owe,x) 1 9
ox sinf 00

oW (0,x)
00

V,. c0s6 (D(H,x)sin@ )+y(0,x)W(8,x)

Growth inside the
resonant region,
damping outside it

Angular diffusion




Langmuir wave propagating in a plasma with a

density gradient
2 Mg
1
kK (x)= v — :
() 302 (x) 34,
HK(X)
4rm e’
2 e .
wp (X)= m ’
kT
Al = .
Y 4mne’ Von




Competition between growth and angular diffusion

angular clifflusion

Y, >V > %> %> >,
inhomogeneity



Spatial distribution of the growth rate

% (x,0)= YoX (xmaX - x)/(xmaX /2)2 cosO -y,

40

Y(x.0)
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Increment dependence upon
coordinate and angle

16 — ©=0




Equation

2
d W(Hz,x) v cotg W (O0,%) [W(0,x + Ax) - W (6,x)]8,0, cos b +
do do
. W(H,x)(sl[x(xmax - -ij) COSH _ )/E/Z] — O
(xmax /2) }/0

Thomas method



Numerical modeling with a single
large-scale inhomogeneity

I'(x,0)

I

max

-0.1+1.1exp

]

2

|

0
AB

]

exp

]




Spatial distribution of the spectral energy density
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The results of numerical
simulations with a
single large-scale
inhomogeneity.

(a) Spatial profiles of the
ratio I'/D for 6 = 0 and

r__J/D=10,15, 20.

(b) Spatial dependence
of normalized wave
energy densities.

(c) The profiles from (b)
after a spatial shifts.

I'/D

20

10

(a)

Illlllllllo_l

Illlllllllo

0 X cnifted / Xmax ~ 0-D



Characteristic growth rate dependence upon parametres

I'/D



Numerical modeling with several
random inhomogeneities

['(x,0) is a noise-like function
containing random number of pulses
with random amplitudes and positions

10000 runs



Problem of characterization of the shot
noise

Rice (1944), Gilbert & Pollak (1960)
For impulse shapes F(t) the probability

distributions
Q(l) = Pr{l(t) <]
obey an integral equation

10(]) = fQ(x)dx + an[] — F()]F (t)dt

n — the average number of pulses per unit of time



Examples

1. Step-like distribution with the amplitude b, and
average pulse rate n

(nA)"

PrZ(z) = kb] =~

exp(—nA)

2. F(t)=(1-1), ontime interval 0 <t <1, pulse rate n

P(1) = exp(- l)k W (1= k) L2y = R,




Exponential distribution




Probability distribution function for shot noise with
exponential pulses (Gilbert and Pollak, 1960)

P(x) [
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How to compare model distributions with
experimental ones ?

Pearson classification of distributions:

Gamma, beta, normal, log-normal et cetera
Belong to these classes. Two parameters that
Characterize the distribution family:

are related to skewness and curtosis



Some definitions

3/2

g =/ 1y =

G, and G, are unbiased estimates
of g, and g,



Position on the diagram for Pearson curves
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Statistical characteristics

Two factors:
 The form of the distribution (exponential)
e The statistics of increment distribution

(Gaussian)



Dependence of G, and G, on the effective number
of regions with the positive growth rate
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Probability distribution function of
wave amplitudes

Probability distribution P(log(|E|)) of peak |E| amplitudes - automatic gain
10 T T T

2
10

1
10

Fitted parabola (gaussian P(log E) )

E [mv/m]
In this viewgraph is plotted the PDF of peak wave amplitudes P(log E)
in log-log axes (based on foreshock event from Feb 17, 2002). The amplitudes
seem to be distrubuted similar to beta / gamma or log-normal PDF with a
power-law tail at largest amplitudes. We suggest that the physics of large

amplitude waves might be different from the physics at low amplitudes.



Experimental data overview

High frequency electric field data from the WBD
instrument of CLUSTER

Measures one component of the E-field
Band-pass filtered between 1 kHz and 77 kHz

WBD operates in duty cycles - each block of data is
10 milliseconds long and is followed by a gap of
80ms. The size of this block imposes limits the
spectral resolution of the Fourier transform.



The Event (March 16, 2001)
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- CLUSTER in the Earth‘s foreshock
(Diff =0..-6 Ry)

- Observed wave amplitudes up to S mV/m
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Data processing

» Correction of measured amplitudes to take into
account antenna position with respect to
magnetic field

* Removing data with strong instrumental effects
and large angle between antenna and magnetic
field (> 75 degq)

Ensemble of more than 22000 values of mean
|E|?



PDF
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PDF for Langmuir wave energy density
for the period 9:25-10:13 UT on February 17, 2002
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Pearson type IV distribution



Probability distribution fit of the WBD data (13 May 2002)
Amplitudes 0.012 - 0.400 mV/m, num. samples = 25328, num. bins = 30

4
10 - . ———
[l #* data
loghormal
[| — gamma
| — Beta
3
10 -
o
=
a
2
10 -
1
10 1 1 1 1 1 PR T T |
-2 -1 0
10 10 10

E [m\im]

Log-normal-distribution : x2-Maximum Likelihood : 154.70, & = 1.000000
Gamma-distribution : x2-Maximum Likelihood : 128.69, ot = 1.000000
Type IV Pearson-distribution : x2-Maximum Likelihood : 67.37, « =0.999995
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Results of analysis of Whisper data
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« Figure 1. Frequency-time spectrograms obtained by the WHISPER instrument
in the Earth's electron foreshock on 1 February 2003 and 4 February 2005 (from
top to bottom). The electric field strength is expressed in Vrms Hz-1/2, the
signal level is color coded and plotted in dB over 10-7 Vrms Hz-1/2.

The corresponding color scales are shown on the right of the spectrograms.
Right panel contains the spectra averaged over the entire time interval.



Results of analysis of Whisper data
(Musatenko et al., 2007)
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Figure 2. Probability density function for logarithm of energy density of
Langmuir waves observed

(a) during 21:25-24:00 UT on 1 February 2003 and

(b) during 15:57-16:27 UT on 14 February 2005,

when CLUSTER spacecraft were within the Earth's electron foreshock (black
crosses). The red line shows the maximum likelihood fit by normal distribution.

The green and blue lines correspond to fits of Beta distribution and Pearson
Type IV distribution, respectively.



Diagram for various types of

Pearson distributions

(red circles - numerical simulations;
green cross - experimental data)

1 ~ I




Conclusions

* We consider the model describing the interaction
of Langmuir wave packets with the beam in a
randomly inhomogeneous plasma. Two effects
are taken into account:

angular diffusion of the wave vector on the
small amplitude density fluctuations,

the suppression of the instability caused by

the removal of the wave from the
resonance with particles crossing density

perturbations of relatively large amplitude



The problem is similar to the description of the
shot noise and can be statistically treated in a
similar way

The major characteristic features of the electric
field amplitude dynamics resemble ones
resulting from exponential growth / damping of
wave packets

Shot noise consisting of randomly growing /
damping wave packets is described by the PDF
that belongs to type IV Pearson-distributions

The best fit to experimental data PDF’s for
regions, where the amplitudes of wave packets
are relatively small, belongs to the same type of
Pearson distributions.



Results in press:

 Krasnoselskikh, V., V. Lobzin, K. Musatenko,
J. Soucek, J. Pickett, and . Cairns, “Beam-
plasma interaction in randomly
inhomogeneous plasmas and statistical
properties of small-amplitude Langmuir
waves in the solar wind and electron
foreshock”, JGR, accepted, 2007

 Musatenko et al., Statistical properties of
small amplitude Langmuir waves in the
Earth’s electron foreshock, Planetary and
Space Science, accepted, 2007



Beam-plasma interaction in
the solar wind and In electron
foreshock region li

* Nonlinear effects (probably)



Basic properties

 Wave particle interaction in the presence of
finite amplitude low frequency waves

 The maximum increment is not determined
anymore by calculation of the increment
taking HF pump wave and considering LF
wave and another HF wave as secondary
waves

 The process is localized around reflection
points



Polarisation properties of
high frequency waves near
the electron foreshock :
WIND observations and
interpretation
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Abstract

The electron foreshock exhibits wind a variety of nonlinear
phenomena, among which wave-wave interactions around the
plasma frequency have received much interest [1,2].

A conspicuous feature is the occurrence of coherent quasi-
monochromatic wave packets with close frequencies. Although
these spectra are supposed to be the signature of the nonlinear
decay of Langmuir waves, many open questions remain.

Here we consider their polarisation properties to shed a light on
their interpretation. Our analysis is based on high-frequency electric
field measurements made in the terrestrial electron foreshock by the
WIND satellite. Two components of the electric field are available.
Using a demodulation technique, we show how to extract the
polarisation properties of the waves and compare these to the
orientation of the magnetic field.

The main observed feature is a quasi co-planarity of the k-
vectors of the primary and secondary waves, and their closeness to
the direction of the background magnetic field. These results give a
strong argument in favour of the theoretical model of beam-plasma
interaction, where the saturation of the wave amplitude is
determined by the decay instability. This is further supported by the

orientation of the k-vector of the secondarv wave. which is



Context

* The electron foreshock exhibits highly
coherent wave packets W|th two close

frequencies

Kellogg et al. J
(1997)

= | GR 102
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Objective

 These waves are expected to result from
the nonlinear decay of intense Langmuir
wave packets, yet their origin is still
debated.

 We measured the polarisation and the k-
vector of the individual interacting waves.

e Oir reslilts nraovide exnerimental
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5) Plot hodograms for the two fitted
sine waves
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Our observations

In most cases we observe :

* A spectrum with two sharp but close
spectral lines

* These frequencies are close to the plasma
frequency



We have fo = 21.36 kHz, fo —20.64 kHz
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Case study : event #35

Our initial hypotheses (dominant effect of

DOPP|ek° Vsw _ 0017 > —kﬁrf) — 0.0035
shift) are Wil sausiieu bnlbe




Similar conclusions hold for«

« Case #37 :

« Case #39:

Other cases
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Particle distributions

» Characteristic particle energies 1 keV
» Characteristic wavelength:

Why such a difference ?

Propagation effect in nonhomogeneous plasma



Interpretation

E(F.1) = EO\/k%O expl(i f;[(,f) dr — it + [ ()

WKB wave propagation, even fory =0

P energy flux constant

vk An/n ~103

Propagation to denser plasma results in
decreasing of k — vector and of wave damping
on thermal electrons for HF and LF waves



Conclusions (1/2)

* Our analysis of polarization properties of
waves observed in the boundary between
the solar wind and electron foreshock
region by the WIND satellite shows that
some of these waves are Langmuir waves.

* Their spectra consists of two clearly
identifiable peaks separated in frequency.

* These spectral properties can be



Conclusions (2/2)

When the solar wind speed is large
enough and is directed closely to the
magnetic field, the wave vectors of
primary and secondary waves are
almost collinear and their direction is
close to the direction of the background
magnetic field.

Using the directivity of the k-vectors we
can evaluate the wavelength of the
waves and the characteristic lengths
of the wave packets.



Problem to solve

« Electrostatic Langmuir wave propagates
towards the point of reflection and in
unperturbed plasma the reflected Langmuir
wave is strongly damped

- Evaluate the increment of the absolute decay
instability and characteristic frequency and
k-vector of the generated secondary
Langmuir wave and ion-sound wave



Problem Il to solve

* The beam propagates in a weakly
magnetized plasma with density
fluctuations described by the probability
distribution P(a, ON), a —characteristic
scale, ON — density fluctuations aplitude,
that can be chosen for convenience

» Determine the average characteristics of
plasma waves and the length of the
relaxation of the beam



Two remarks

» http://[stamms2.cnrs-orleans.fr/

 http://www.copernicus.org/EGU/annales/p
ublished papers.html






