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Abstract

A theory for the generation of seed magnetic field and plasma flow
on cosmological scales driven by externally given baro-clinic vectors is
presented. The Beltrami-like plasma fields can grow from zero values
at initial time t = 0 from a non-equilibrium state. An exact analytical
solution of the set of two fluid equations is obtained which is valid for
both small and large plasma β-values. Weaknesses of previous models for
seed magnetic field generation are also pointed out. The estimate of the
magnitude of the galactic seed magnetic field turns out to be 10−14G and
may vary depending upon the scale lengths of the density and temperature
gradients. The seed magnetic field may be amplified later by αω-dynamo
(or by some other mechanism) to the present observed values of ∼ (2 −
10)µG. The theory has been applied to laser-induced plasmas as well and
the estimate of the magnetic field’s magnitude is in agreement with the
experimentally observed values.
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I. Introduction

In spite of a great deal of research work in this direction there is still not a
convincing theory for the generation of seed magnetic field on cosmological and
laboratory scales [1]. Extensive literature has appeared on galactic and inter-
galactic magnetic fields [2, 3, 4, 5]. The simplest justification can be that the
generation of magnetic fields was a feature of initial conditions of the universe.
However a more appealing hypothesis is that they are created by the physical
mechanism operating after the Big Bang. The magnetic fields have been ob-
served in almost all astronomical environments like the galaxies, intergalactic
space, active galactic nuclei (AGN), galaxy clusters etc.

Most of the studies of magnetic field generation are based on single fluid
magnetohydrodynamics (MHD). This model is very useful for the study of large
scale magnetic phenomena. Therefore the MHD-based theoretical models and
numerical simulations are very helpful to study the astrophysical magnetic fields
[6, 7, 8].

In principal, the dynamo paradigm is incomplete because it is unable to
explain the creation of initial magnetic field, the seed [1]. It is possible that the
magnetic field is highly amplified by the αω-dynamo effect later, but there must
be some seed field already present for this action.

The magnetic fields of magnitudes of the order of 2-10 µG have been
observed in many galaxies [9, 10]. The galactic magnetic fields have components
parallel to the galactic disk planes as well as along the vertical directions [5, 11,
12]. Biermann battery effect [13] is the most widely studied mechanism for the
generation of seed magnetic fields. Several modifications to the basic Biermann
model and computer simulations have also been presented [14, 15, 16, 17]. More
than a decade ago, it was shown that the seed magnetic field on galactic scale
can be produced by the electron Biermann-type diffusion processes ([18]. Unlike
the original Biermann process these mechanisms do not require rotation of the
system.

The strong magnetic fields produced in laser-induced plasmas [19, 20] strengthen
the argument that plasma dynamics can create large magnetic fields. Most of
the theoretical models to explain the creation of magnetic fields in laser plasma
systems are also based on electron baroclinic term (∇Te ×∇ne) (where ne and
Te are the electron density and temperature, respectively). In these works, the
ions are assumed to be stationary and electrons are treated to be inertia-less.
The equations of the single fluid electron magnetohydrodynamics (EMHD) are
used in these models [21, 22]. The weaknesses and contradictions of EMHD
theory have also been discussed in a few research papers [23] with reference to
magnetic field generation.Therefore we note that the seed magnetic field gener-
ation has not been explained in a true sense by MHD and EMHD models. The
ideal MHD equations conserve the magnetic flux as “circulation”, so that they
cannot explain the generation of magnetic field. A theory for the self-excitation
of transverse electromagnetic waves due to anisotropy of electron velocity dis-
tribution has also been presented many decades ago [24].

The magnetic fields in galaxies have coherent structures of the scales of
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tens of kilo parsec (kpc) winding around the galaxy which is larger than the
seed from any given star or stellar binary system. These regular structures have
superimposed on them shorter scale irregular structures as well [26]. These fields
are believed to have been growing with the evolution of the universe during times
of the order of billions of years∼ 109yrs.

On the other hand, magnetic fields have been observed in laser-induced
plasma experiments of the order of mega Gauss. In early experiments [19] the
growth time of the field was τ ∼ 10−9S and the spatial scale size was of the
order of fuel pallet diameter (∼ µm). In later experiments with intense lasers of
short pulse duration τ ∼ 10−12S, the growth times were correspondingly much
shorter than a nanosecond. The recent experiments use very intense laser beams
and produced plasmas are relativistic and degenerate. Such systems are not
under consideration here. The classical laser-plasma dynamics are also discussed
because they have a similarity with the galactic magnetic field problem, in our
opinion. The previous theoretical models based on EMHD assume ions to be
static and electrons to be inertial-less. These assumptions need to be analyzed
very carefully. First we note that to assume ions to be static and electrons to be
inertia-less (to ignore displacement current in Maxwell’s equation) one needs the

limits (i) ωpi ¿ |∂t| ¿ ωpe (where ωpj =
(

4πn0e2

mj

) 1
2
are the plasma oscillation

frequency of the jth species, and j = e, i) and (ii) |∂t| ¿ c|∇|. The assumption
of inertia-less electrons also helps in using the steady state equation of motion
for electrons. Note that for hydrogen plasma ωpi

ωpe
∼ 1

43 . If we define a smallness
parameter ε ∼ O

(
1

6.5

)
or ε ∼ 1

7 , only then the limit (i) can be applicable and
we can work on a time scale where ions are static and electrons are inertia-less.
But even for this narrow window, the length of time say τ , for the generation of
field may not satisfy the condition (i) easily. Secondly as soon as the magnetic
field is created, the nonlinear Lorentz force term ve × B comes into play and
it’s role must be taken into account.

In laser induced plasmas, it is assumed that the magnetic field is produced
in time τ such that ω−1

pe << τ << ω−1
pi and hence me → 0 and mi → ∞. The

electron equation of motion is written as

0 = −eneE−∇pe

The electron flow is ignored and B = 0 at t = 0 is assumed. The back
reaction of the field on electron motion at times 0 < t is assumed to be negligible
(which is not justified). The curl of the above equation gives,

∇×E = −1
e
∇×

(∇pe

ne

)

Then using Faraday’s law one obtains,

∂tB =
c

e
(∇Te ×∇ ln ne)

If the vectors ∇Te and ∇ne are assumed to be in xy-plane with ∇Te

Te
= κT y =
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constant and ∇ne

ne
= κnx = constant, then B is along z-axis as

∂tB =
(

c

e

Te

LnLT

)
z

where Ln = κ−1
n and LT = κ−1

T are density and temperature gradient scale
lengths, respectively. Integrating the above equation from 0 to τ , one gets,

B =
c

e

Te

LnLT
τ

Let cs =
(

Te

mi

) 1
2

be the ion sound speed and assume τ = Ln

cs
. Then for laser

plasmas with Te ∼ 1keV, n0 ∼ 1020cm−3, cs ∼ 3 × 107cms−1 and LT ∼
0.005cm, one obtains |B| ∼ cTe

ecsLT
= 0.64× 106G [20].

There are many contradictions in this model. For example B grows with
time and hence it’s back reaction on the electron fluid after initial times 0 < t
does not remain negligible. It is also important to note that the time τ = Ln

cs

is the ion time scale, therefore to consider ions to be static is not reasonable.
Moreover in laser-induced dense plasmas ωpi ∼ 1012 − 1013radS−1 and pulse
duration (specially in the early experiments) was of the order ∼ 10−9S. Even
in later experiments τ ≤ 10−12S was the case while ω−1

pi ≤ 10−12S−1.
Therefore ions should not be treated as static [23]. On galactic scales, the

time is so long (∼ 109 years) and density gradient length is so large (∼ tens of
pc) that electrons seem to be in equilibrium and their motions on λe scale is
also irrelevant. In this situation only the electron current can not be responsible
for magnetic field generation. If ∂tB 6= 0 due to (∇Te × ∇ne 6= 0), then ion
dynamics due to (∇Ti ×∇ni)-term should also be taken into account. Even if
ne ∼ ni = n is assumed, the condition Ti 6= Te should hold otherwise plasma
is in thermal equilibrium and significant currents can not exist. Moreover, the
magnetic field can not be time-dependent if plasma is in equilibrium. Hence in
equilibrium ∂tB = 0 as well as ∇Ti ×∇n = 0, (j = e, i) should hold.

The above discussion shows that Biermann battery formulism is very restric-
tive and can be valid only on a very limited time scale which may not be useful
for finding a general mechanism for the creation of seed magnetic fields.

A few years ago, a theory for the generation of magnetic field and plasma
flow based on two-fluid equations has been presented [25]. In this work it is
assumed that at time t = 0, the plasma has ∇n×∇Tj 6= 0 (where ne ∼ ni ' n
and Tj denote the temperature of jth species). The plasma evolves on a slow
time scale due to given form of baro-clinic vectors (∇ψ ×∇Tj) where ψ = ln n.
A particular solution of the two-fluid equations is obtained and it is shown that
Beltrami-like field and flow can be generated by the external gradients when
the plasma is in a non-equilibrium state with Te 6= Ti. The terms (∇ψ ×∇Tj)
are considered to be the functions of only (x, y) coordinates and all the plasma
fields are assumed to have the similar form as that of the source terms. The self-
consistent fields are separated into growing and ambient (static) parts, and each
part has different geometric character- the toroidal magnetic field and poloidal
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flow grow simultaneously, while the poloidal magnetic field and toroidal flow
are static. Then the instabilities of some ambient inhomogeneous plasma (the
stationary fields in the model) may create magnetic fields and flows with specific
forms due to the baroclinic terms. A particular form of the baroclinic vectors
is chosen such that all the nonlinear terms vanish and we succeed to obtain two
linear equations which have an exact solution.

However, in this theoretical model there is a weakness that poloidal compo-
nents of magnetic field and toroidal component of plasma flow are assumed to
be time-independent. Therefore some static non-zero magnetic field and flow
field have to prevail in the system.

In the present investigation [27], we modify the previous theory [25] to ex-
plain the creation of all the components of seed magnetic field and plasma flow
from t = 0 due to externally given forms of baroclinic vectors (∇n×∇Tj 6= 0).
This theoretical model is applicable to very large plasma β-values as well. Fur-
thermore the spatial and temporal scales of two fluid and one fluid plasma
models will be discussed briefly in the context of magnetic field generation and
the problems associated with these scales will be pointed out. It seems necessary
to mention here that the inclusion of electron pressure term in the ideal MHD
set of equations changes the scenario.

It is important to note that the present theory is different from Biermann
battery concept and dynamo mechanism in the sense that it takes into account
the dynamics of both ions and electrons. This work also points out that the
Biermann battery is not necessary for the creation of magnetic field. Rather the
field and plasma flow both are simultaneously created by the pressure gradients.
However, the pioneering idea of Biermann is used to generate magnetic field and
flow. That is the non-collinear density and temperature gradients are assumed
to be the source of plasma evolution. The term ∇ ×

(
∇pe

ne

)
6= 0 is one of the

source terms for the generation of magnetic field and it modifies the scope of
MHD and Hall magnetohydrodynamics (HMHD).

II. Mathematical model

We show that the set of nonlinear two-fluid equations (with inertia-less elec-
trons) along with Maxwell’s equations can have an analytical solution when the
pressure gradients ∇pe and ∇pi have particular spatial structures. It is inter-
esting to find out an analytical solution of a complicated system of equations
to understand the basic physics of plasma evolution along with the creation of
magnetic field and flow on the lines of Ref. [25].

The flows vj and magnetic field B vectors will be defined in terms of a few
scalar fields (φ, u, χ, h) which will be assumed to be correlated. These relation-
ships will cause cancellations of all nonlinear terms in the set of equations. The
density will be defined as ln n = ψ, and it will become independent of time. All
scalar fields (φ, u, χ, h) will be assumed to be functions of ψ. We shall choose
particular spatial dependences of ∇n, ∇Te and ∇Ti. Then all fields vi and B
will automatically become functions of externally given baroclinic vectors. We
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shall see that for such a choice of the form of gradients, the nonlinear equations
for electrons and ions reduce to two linear equations and all the assumptions
made on the way are satisfied. The flow vi and mangnetic field B will appear to
grow from t = 0 due to (∇ψ ×∇Tj) vectors from a non-equilibrium state with
Te 6= Ti and ne ' ni = n.

The equation of motion for inertial-less electrons is,

0 ' −ene

(
E +

1
c
ve ×B

)
−∇pe (1)

The ion momentum conservation gives,

mini (∂t + vi.∇)vi = eni

(
E +

1
c
vi ×B

)
−∇pi (2)

The continuity equation for jth species (j = e,i) can be written as,

∂tnj +∇. (njvj) = 0 (3)

Ampere’s law becomes,

∇×B =
4π

c
J (4)

under the approximation |∂t| ¿ ωpe, |c∇|.
We need Faraday’s law as well i.e.

∇×E = −1
c
∂tB (5)

Instead of Poisson equation, the quasi-neutrality (ne ∼ ni ∼ n) is used which
defines the current as J = en(vi − ve) and it yields

ve = vi − J
en

(6)

The equations of state are defined as,

pj = njTj (7)

Let both electron and ion fluids be incompressible (∇.vj = 0) and densities
be time-independent (∂tnj = 0). Then equation(3) demands,

∇ψ.vj = 0 (8)

Let us assume E = −∇Φ− 1
c∂tA . After taking curl of equation (1), we use

Eqs. (5) and (6) to obtain,

∂tB +∇×
[
B× (vi − c

4πe

∇×B
n

)
]

=
c

e
(∇Te ×∇ψ) (9)

Then using v.∇v = 1
2∇v2−v×(∇×v) and taking curl of Eq.(2), we obtain,
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∂t(aB +∇× vi)−∇× [vi × (aB +∇× vi)] = − 1
mi

(∇Ti ×∇ψ) (10)

where a = e
mic

.
Now we define the fluid fields as,

vi = (∇φ× z + uz)f(t) = (∂yφ,−∂xφ, u)f (11)

B = (∇χ× z + hz)f(t) = (∂yχ,−∂xχ, h)f (12)

where the scalar fields φ, u, χand h are functions of x, y and t only. Note that φ
is a scalar field different from electrostatic potential Φ . Equation (8) demands,

{φ, ψ} = 0 (13)

where {φ, ψ} = ∂yφ∂xχ− ∂xφ∂yχ.
Using definitions (11) and (12) one finds,

∇× [vi × (aB +∇× vi)]

= f2
[−∂y{φ, (aχ + u)}, ∂x{φ, (aχ + u)}, {(ah−∇2

⊥φ), φ}+ {(aχ + u), u}]
(14)

If we assume

{φ, χ} = 0, {φ, u} = 0, {h, φ} = 0, {∇2φ, φ} = 0 (15)

then the nonlinear terms of Eq. (10) vanish, and it reduces to

∂t(aB +∇× vi) = − 1
mi

(∇Ti ×∇ψ) (16)

The condition {∇2φ, φ} = 0 may be satisfied if,

∇2
⊥φ = −λφ (17)

where λ is an arbitrary constant.
Note that

∇× (ve + B) = −∇×
[
B×

(
vi − b

∇×B
n

)]

where b = c
4πe and this term also disappears because due to (15) the following

conditions also hold,

{∇2χ, χ
}

= 0; {ψ, h} = 0; {ψ, χ} = 0 (18)

Let us assume
B = g (∇× vi) (19)
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where g is an arbitrary constant. Equation (19) along with (11) and (12) gives,

χ = gu (20)

and

h = −g∇2φ (21)

Then the equations (9) and (10), respectively, yield

∂tB =
c

e
(∇Te ×∇ψ) (22)

and

(
a + g−1

)
∂tB = − 1

mi
(∇Ti ×∇ψ) (23)

where a + g−1 6= 0 must hold.
Equations (22) and (23) are similar to Eqs. (17) and (19) of [25] if these are

normalized in the same way and if we assume ∂tχ = 0, ∂tu = 0. In this case the
x and y components of the baroclinic vectors (∇Tj ×∇ψ) must vanish.

If the Hall term and pressure term both are ignored, then curl of Eq.(1)
yields the simplest form of Ohm’s law as,

∂tB = ∇× (vi ×B) (24)

The nonlinear term on rhs vanishes due to the forms of vi and B assumed in
Eqs. (11) and (12), respectively. This means that the magnetic field generation
mechanism is killed when ∇pe-term is ignored in Ohm’s law. If Hall-term is
ignored, then ideal MHD equations are modified by the inclusion of ∇pe-term
in Ohm’s law. Hence a source of magnetic field generation is added to the MHD
equaitons. Since the nonlinear terms vanish, therefore the present theory is
applicable to both MHD and HMHD scales. The HMHD spatial scale is the
ion skin depth λi = c

ωpi
and MHD can be used even for larger scales. It will

be shown later that the present model is applicable in the limit of infinitely
large plasma β-values as well. The collisions have been ignored here just for
simplicity.

It is important to note that we must have ∂t(ϕ, χ, u, h) 6= 0 so that all the
components of magnetic field B and flow vi evolve from t = 0 [26]. If the
nonlinear terms of Eqs.(9) and (10) do not vanish, then an analytical solution
of these equations is not easy to find. A numerical simulation is required in this
case.

There is another important point to be noticed here. In equations (22)
and (23), the scales of B (and correspondingly vi through (19)) should be the
same as that of (∇Tj ×∇ψ) which are the driving terms for plasma evolution.
The short scale nonlinear phenomena have disappeared automatically under the
conditions (15) and (18). Then B is directly proportion to (∇Tj ×∇ψ).
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A few comments on the scales of applicability of the present model seem
to be necessary at this stage. In the previous work [25], the set of Eq.(1-
7) were normalized following the procedure of Ref.[28] where the double curl
Beltrami steady state was investigated. A few years ago [29], the analysis of
two interesting scales of magneto-plasmas has been presented. In this work the
Hall-term is treated as a singular perturbation in the two-fluid equations. A
smallness parameter εi = λi

L0
is introduced where λi = c

ωpi
is the ion skin depth

and L0 is a characteristic length and may be equal to the size of the system.
The HMHD has both the macroscopic and microscopic scales superimposed on
each other. In the limit εi → 0, the system degenerates into standard MHD
with a single relevant (the macroscopic) scale. In this work, variables have been
normalized as follows,

x =L0x̃,B =B0B̃, n = n0ñ, t =
(

L0
va

)
t̃,

pj =
(

B2
0

4π

)
p̃j ,vj = vAṽ,E =

(
υAB0

c

)
Ẽ, where υA = B0√

4πn0mi
is the Alfven

speed.
Under this normalization, the Eqs.(9) and (10) become, respectively, as

∂t̃B̃+∇̃ ×
[(

B̃× ṽ
)
− εi

1
ñ
B̃×

(
∇̃ × B̃

)]
= −εi

(
∇̃ψ̃ × ∇̃T̃e

)
(25)

and

∂t̃

(
B̃ + εi∇̃ × ṽi

)
−∇×

[
ṽ ×

(
B̃ + εi∇× ṽ

)]
= εi

(
∇̃ψ̃ × ∇̃T̃i

)
(26)

The superscript tilde (∼) denotes the normalized quantities and operators.
Note that if L0 = λi is assumed, then Eq.(25) and (26) are the same as Eq.(6 )
and ( 7) of Ref.[25] because υA

L0
= υA

λi
= Ωi which normalizes time in this case.

We have shown that if all plasma fields are assumed to be driven by baroclinic
vectors and ∇ψ and ∇Tj have suitable spatial structures, then the Eqs. (25)
and (26) will reduce, respectively, to

∂t̃B̃ = −εi

(
∇̃ψ̃ × ∇̃T̃e

)
(27)

and

(
1 + εig

−1
)
∂t̃B̃ =εi

(
∇̃ψ̃ × ∇̃T̃i

)
(28)

where ψ̃ = ln ñ and

B̃ =g̃
(
∇̃ × Ṽ

)
(29)

has been assumed with g̃ to be an arbitrary constant.
The theoretical studies of Refs. [28, 29] do not discuss any limit on plasma

β = cs/vA. Since they deal with steady state, therefore we think that they are
more relevant for the case β < 1 otherwise plasma will be expanding. The
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expansion rate may be assumed to be constant. However, we do not discuss the
steady state problem here.

For an interesting comparison with the case of evolving plasma with 1 < β,
we analyze the two fluid equations using another normalization scheme 2 (say)
and let the previous one be called as scheme 1.

Since we are interested in the seed magmatic field generation by plasma
dynamics and assume B = 0 at t = 0, therefore it is preferable to normalize
the pressures with some arbitrary pressure p0 = n0T0. Let us use the following
normalization,

x =L0x̃,B =B0B̃, n = n0ñ, t = L0
cs

t̃,

pj = p2
j

n0T0
,vj = csṽj ,E = csB0

c Ẽ
Then Eqs.(25) and (26) can be written, respectively, as

∂t̃B̃+∇̃ ×
[(

B̃× ṽ
)
− 1

ñ

ρs

L0

1
β
B̃×

(
∇̃ × B̃

)]
= − ρs

L0

(
∇̃ψ̃ × ∇̃T̃e

)
(30)

and

∂t̃

(
B̃ +

ρs

L0
∇̃ × ṽ

)
− ∇̃ ×

[(
ṽ × B̃

)
+

ρs

L0
ṽ×

(
∇̃ × ṽ

)]
=

ρs

L0

(
∇̃ψ̃ × ∇̃T̃i

)

(31)
whereρs = cs

Ωi
and ρs →∞ as t → 0 with B = 0.

Note that ρ2
s/λ2

i = c2
s

υ2
A

= β and hence for β . 1, the scheme 1 is suitable
and for 1 < β, the scheme 2 is useful, in our opinion.

If 1 < β is assumed, then we may consider two cases,a) 1 < β . mi/me and
b) mi

me
< β.

Let ρs ∼ L0, and ε = 1
β in case a, then the Hall-term again becomes a

singular perturbation defining a microscopic scale. In the limit 1 ¿ β, the Hall
term becomes negligibly small and the system reduces to MHD case having only
the macroscopic scale.

Let us use ISM parameters Te ∼ 1kev and n0 ∼ 1cm−3 with λi ∼ 1.87 ×
104cm assuming Hydrogen plasma. We shall present an estimate of the seed
field to be 10−14G in Sec. IV. Previous studies have predicted the galactic seed
field generated in τ = 109yrs as [B] ∼ (

10−15 − 10−17
)
Gauss [18] and these

values are still flexible. So, we choose [B] ∼ 10−14G which predicts ρs ∼ 10−2pc
(parsec) and it is not negligibly small compared to the characteristic length(
L0 ∼ 1pc ' 1018cm

)
in this case while εi = λi

L0
∼ 10−14, β = 0.2 × 1018 and

Ωi ∼ 10−11radS−1 at the peak value of seed magnetic field generated in time
τ ∼ 109yrs after the Big Bang. It may be mentioned here that we need an
estimate for ∇Te to evaluate |B|. Here a particular value Te ∼ 1KeV has been
used just for an analysis of the scales. Since the gradient scale lengths of density
and temperature are of the order of L0 ∼ 1pc (may vary from 1 to 103pc, for
example), therefore the normalization scheme 2 is relevant. We shall choose
density gradient scale length µ−1

1 ∼ Ln ∼ 103pc in Sec. IV, then the time is
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normalized to the factor Ln

cs
∼ 1

30 ×109yrs which is reasonable because the time
of evolution is assumed to be τ ∼ 109yrs.

Now we look at the laser-induced plasmas. Let us choose Eq. (30) to look
into the scales. When non-linear terms vanish it becomes,

∂t̃B̃ = − ρs

L0

(
∇̃ψ̃ × ∇̃T̃e

)
(32)

Let us assume density gradient along x-axis and temperature gradient along
y-axis. If the scale lengths of density and temperature gradients are Ln and Lᵀ
respectively and Te

T0
∼ 1, then integrating Eq. (32) for t = 0 → τ, we can write

it as,

B = −
{

c

e

(
Te

LnLT

)
τ

}
ẑ (33)

Note that Eq. (33) is the same as Eq. (5-79) of Ref. [20]. For the laser plasma
with Te ∼ 1KeV, n0 ∼ 1020cm−3, cs ∼ 3× 107cmS−1 and Ln ∼ LT ∼ 0.005cm,
one obtains |B| ' 0.6 × 106G [20] where τ ' Ln

cs
has been used. We have

already explained that Eq. (33) alone must not be used to determine |B| .But
here we use this equation just to understand the scales of applicability. For this
plasma we find λi ∼ 2.25 × 10−4cm, εi ∼ 5.6 × 10−2 and τ = Ln

cs
∼ 1.29 ×

10−10S which is smaller than 10−9S (the laser pulse duration time in the initial
experiments). Since me

mi
< εi < 1, therefore in this case the Hall-Term is a

singular perturbation. Our model is applicable to HMHD scale and we may use
normalization scheme 1. Note that 1 < β ∼ 62 for this plasma.

Important point to note is that in the case 1
β → 0 the Hall-term is vanishingly

small and the model is applicable to MHD scales. But for L0 ∼ λi, our model
is applicable to HMHD scale. It may also be mentioned here that we have used
the peak value of seed field to estimate ρs in case of ISM. But it can be even
larger than 10−2pc corresponding to smaller values of B.

Our main aim is to predict the generation of ‘seed’ magnetic field. Therefore,
it seems better to use the equations in physical units without normalization to
keep the option open for application to different systems.

III. Seed magnetic field and flow

Let us assume
ψ = ψ0e

µ1x cosµ2y (34)

Te = T00e + T
′
0e(y − z)f(t) (35)

and

Ti = T00i + T
′
0i(y − z)f(t) (36)
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Here µ1, µ2, T00j , T
′
0j are constants whereas T0j are in units of eV and T

′
0j

denote the temperature gradients. Note that Eq. (17) is satisfied with λ =(
µ2

2 − µ2
1

)
.

Then

∇Te ×∇ψ = f(t)T
′
0eψ0e

µ1x(−µ2 sin µ2y,−µ1 cos µ2y,−µ1 cos µ2y) (37)

and

∇Ti ×∇ψ = f(t)T
′
0iψ0e

µ1x(−µ2 sin µ2y,−µ1 cos µ2y,−µ1 cos µ2y) (38)

Now we shall see that all the fields φ, ψ, χ and h have the forms similar to
ψ.

If
f(t) = eγt (39)

is assumed (where γ is a constant), then equation(22) gives,

χ =
c

e

T
′
0e

γ
ψ (40)

and

h = − c

e

µ1T
′
0e

γ
ψ (41)

where γ 6= 0. Similarly Eq.(23) yields,

χ = − T
′
0i

miγ(a + g−1)
ψ (42)

and

h =
T
′
0iµ1

miγ(a + g−1)
ψ (43)

The relations (40-43) require,

T
′
0e = − T

′
0i

(a + g−1)
(44)

The fields u and φ are related with χ and h through Eqs.(20) and (21). There-
fore all the components of B and vi become functions of φ which has a linear
relationship with ψ. Therefore the conditions (15) and (18) are satisfied along
with equation(13). The components of the fields B and vj have the structural
forms either of type F1 = eµ1x cosµ2y or F2 = eµ1x sin µ2y. The forms of
these functions in xy-plane are shown in Fig. 1 and Fig. 2, respectively, for
µ1x = −1 → 0 and µ2y = 0 → 2π.
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Fig.1. The function F1 (x, y) is plotted for µ1x = 0 → −1 and 0 6 µ2y 6 2π.
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Fig. 2. The function F2 (x, y) is plotted for µ1x = 0 → −1 and 0 6 µ2y 6 2π.

IV. Applications

We apply the theory to both cosmological and laser-induced plasmas. We
may consider any one of the equations (22) and (23) to estimate |B|. Let us
choose Eq.(22) which for f(t) = 1 becomes,

∂tB =
cT

′
0e

e
ψ0e

µ1(x) (−µ2 sin µ2y,−µ1 cosµ2y,−µ1 cosµ2y) (45)

Integrating this equation from t = 0 to t = τ , we obtain,

B =
cT

′
0e

e
ψ0e

µ1(x) (−µ2 sin µ2y,−µ1 cosµ2y,−µ1 cosµ2y) τ (46)
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which gives

|B| ' 1√
2

cT
′
0e

e
ψ0e

µ1x
(
µ2

2 + 2µ2
1

) 1
2 τ (47)

Let us try to find out the origin of galactic magnetic fields. We assume that the
seed magnetic field is very weak and it is amplified later on by αω dynamo ( or
by some other mechanism). Here our aim is to generate the magnetic field and
flow by the given baroclinic vector.

Let (y1, z1) be the point inside ISM but the centre of galaxy is far away
point (0,0) on yz plane and it is ignored assuming that the conditions are very
different there. Let (y2, z2) be the edge point region under consideration and
y1 6= z1, (y − z) 6= 0 but y2 − y1 = z2 − z1 = d so that the temperature gradient
along y and z directions is equal in magnitude. The density is assumed to
decrease exponentially away from x1 along x-axis, therefore we have µ1 < 0.
Let x2 − x1 = x0 such that x0µ1 = −1 and ψ0 = 3 so that ψ0e

−1 at the
edge of the region is not less than 1 and hence density remains positive. Then
T
′
0e = −kβ106

100pc is assumed.

Let x0 = 10d = 103pc and µ2d = 2π. Then (µ2
2 + 2µ2

1)
1
2 = 0.062

(pc) and hence,
we have |B| in Guass as,

|B| ∼ [
(1.5) 10−23

]
τ (48)

In Eq.(48), τ is in years. If τ = 109 yrs is assumed, we obtain the seed magnetic
field to be

|B| = 10−14G (49)

which is 103 times larger than the previously estimated field [18].
This increase in the estimated magnitude is due to steeper temperature

gradients assumed in the calculation which is necessary to fulfill the condition
0 < λ.

This theoretical model can be applied to laser-induced plasma experiments
as well. We may define,

κT =
∣∣∣∣

1
Te

dTe

dy

∣∣∣∣ =
∣∣∣∣

1
Te

dTe

dz

∣∣∣∣

and hence T
′
0e = T0eκT . Let µ1 ' µ2 = µ and (µ2

2 + 2µ2
1)

1
2 ' √

3µ where
µ = κn =

∣∣∣ 1
n0)

dn
dx

∣∣∣ and µ1x0 = −1. Then we can express equation (47) as,

|B| ∼
{√

3
2
ψ0

(
cTe

e

)
κnκT e−1

}
τ (50)

Let Ln = 1
κn

and LT = 1
κT

be the density and temperature scale lengths along
x-axis and along y and z axes, respectively. Then the above expression can be
written as,

14



|B| ∼ b0

(
cT0e

e

1
LnLT

)
τ (51)

where b0 =
√

3
2ψ0e

−1. Note that equation (51) is the same as equation (5.79)
of Ref. [20] and we take the same example of laser-induced plasma as chosen
in this reference i.e. Te0 ∼ 103eV, cs ∼ 3 × 107cmS−1, τ = Ln

cs
. We assume

ψ0 = 3 ( to have density positive at the edge region as well) and find b0 ' 1.36.
Therefore

|B0| ∼ (8.7)× 105G (52)

Note that if b0 = 1, we have exactly the same value of |B| ∼ 0.64 × 106G as
estimated in Ref. [20].

But the important point to note is that, the term ve×B has not been dropped
and ion dynamics has also been taken into account because τ = Ln

cs
À ω−1

pi .

V. Discussion

A theory for the generation of seed magnetic fields on cosmological scales
has been presented which can be applicable to laser-induced plasmas as well.
The present theoretical model is actually a modified form of the previous work
[25]. In Ref. [25], one has to assume poloidal components of the magnetic field
and toroidal components of the flow to be static. But in the present theoretical
model[27], all plasma fields can grow from their zero values at t = 0 due to
the source terms (∇ψ ×∇Tj). An exact analytical solution of a set of highly
nonlinear two-fluid partial differential equations of a hot inhomogeneous plasma
has been obtained. The plasma is assumed to be produced with electron and
ion pressure gradients in a state of non-equilibrium (Ti 6= Te). The baroclinic
vectors (∇ψ ×∇Te) and (∇ψ ×∇Ti) then become the source for plasma evolu-
tion creating it’s flow vi and magnetic field B. These vectors are expressed in
terms of scalar fields (φ, u, χ, h) in Eqs. (11) and (12). A relationship between
vi and B is assumed to be given by Eq. (19). The plasma fields are assumed
to satisfy the conditions of Eqs. (15) and (18). Then the forms of ∇ψ and ∇Tj

are chosen in Eqs. (34), (35) and (36) in such a way that (∇ψ ×∇Tj) vectors
become proportional to ψ. Then all other fields can also be expressed in terms
of ψ in Eqs. (40-43) and hence all the assumed conditions in Eqs. (13), (15)
and (18) are satisfied.

This is a particular solution of the plasma equations. But it shows how the
plasma can evolve form t = 0 with B = 0 generating it’s magnetic field and
flow. It has been shown that the present theoretical model is applicable to both
HMHD and MHD scales.

Since (∇ψ×∇Tj) are the generating forces therefore the scales of vi and B
should be of the same order of magnitude as that of ∇ψ and ∇Tj as is clear from
equations (22) and (23). The short scale phenomena superimposed upon such
fields do not participate in the creation of magnetic field and flow on very large
scales. Several effects like dissipation and compressibility have been ignored.
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It has not been discussed here that how the particular spatial structures of
density and temperature gradients are produced. But these simplifications and
assumptions have been made to present an exact solution of the complex partial
differential equations. The estimates of the magnetic fields at both cosmological
and laboratory scales are very close to observations. It is necessary to explain
why our estimate of the ‘seed’ magnetic field is 103-times larger than that made
in Ref. [18]. The reason for this larger estimate of seed field is that we assume
the density gradient scale length (µ1) about 10 -times larger and temperature
gradient scale length (µ2) about 102-times smaller than that used in Ref. [18].
These parameters can be varied because the interstellar cloud can have regions
of different magnitudes of the scales of gradients, in our opinion.

It must be pointed out here that our assumption of equal magnitudes of
temperature gradients along +ve y-axis and (-ve) z-axis forces us to choose
y0 = |y2 − y1| = |z2 − z1| = z0. Then the requirement y0µ2 = 2π along with
|µ1| < |µ2| (to have λ = µ2

2−µ2
1 > 0) compels us to assume steeper temperature

gradients along both the axes compared to Ref. [18]. However, the future
observations about the gradients can be useful to make the estimate for B-field
magnitude more exact.

It is important to point out that the seed magnetic field investigated in Ref.
[18] has only non-zero component along z-axis while Bx = By = 0 is assumed
because (∇Te ×∇ne) is along z-axis. In our theoretical model, the baro-clinic
vectors (∇Tj ×∇ψ) have all the three components to be non-zero and hence the
galactic seed magnetic field has three components which is in agreement with
the observations [11, 12].

The different values of the magnitudes of the density and temperature gra-
dients can also be used for the generation of the magnetic and flow fields with
y0 6= z0 and µ1 < µ2. But in these cases, analytical solution of the set of
nonlinear partial differential equations may not be found.

The present theory can have wider applications to many astrophysical situa-
tions. However, the numerical simulations will be required, if plasma is consid-
ered to be non ideal and if the forms of ∇n and ∇Tj are chosen to be different
from the ones used in the present analytical calculations.
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