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Roskilde, Denmark.

2. Department of Physics and Technology, University of Tromsg, N-9037 Tromsg,
Norway

A rich variety of materials with structural disorder reveal a dielectric relaxation that is
not described by the standard exponential (i.e., Debye like) decay with a specific decay
time. Rather the dielectric properties are described by a stretched exponential decay,
o(t) = exp{-(t/t)*}, the so-called Kohlrausch-Williams-Watts (KWW) relaxation func-
tion, with the exponent 0 < 3 < 1. These materials additionally reveal universality in the
dependence of the ac (alternating current) conductivity on frequency, expressed
through o(®w) = ®", where 0 < n < 1. These results are mainly empirically; based on
observations in various amorphous materials as polymers and glass like materials near
the glass transition temperature. The physical origin and the statistical-mechanical
foundation of these behaviors have been a matter of active research for the last dec-
ades; however, detailed understanding is still lacking.

Here we will discuss the properties of dielectric relaxation in disordered materials and
the connection to the ac conduction properties. We demonstrate that the exponents 3
and m are connected through the relation: = 1-f. The key issues are, the stretched
exponential character of dielectric relaxation, a power-law power spectral density, and
the anomalous dependence of ac conduction coefficient on frequency. We describe the
KWW relaxation kinetically by applying the formulation in terms of fractional calculus,
and we propose a systematic derivation of the fractional relaxation and fractional diffu-
sion equations from the basic properties of the materials.

References:
A. V. Milovanov, K. Rypdal, and J. J. Rasmussen, Phys. Rev. B (2007) submitted for

publication.
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Outline

Relaxation and ac conduction in materials with molecular
or structural disorder

Examples: amorphous materials, polymers, glass-like
near the glass transition temperature

Connection between the dielectric relaxation and the ac
conduction properties

Self-consistent dynamical relaxation model
Derivation of fractional relaxation equation
Conclusions
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Common dynamical properties

Many materials with a disordered structure have two
iImportant properties in common...

Non-exponential, non-Debye character of dielectric
relaxation, often described by a stretched exponential
Kohlrausch-Williams-Watts (KWW) decay function

Qbﬁ(t) — eXP[—(t/T)ﬂ]; 0 < 8 <1;7=const.

Universality of ac (alternating-current) conduction,
which, for a range of relatively high frequencies, is
expressible in terms of a power-law dependence of the
real part of conductivity on frequency

o'(w) o< W 0<n<l



Stretched exponetial relaxation, KWW

Kohlrausch-Williams-Watts (KWW) decay function

Williams & Watts, Trans. Faraday Soc 66, 89 (1970

[¢ﬁ(t) — eXp[—(t/T)ﬁ]; 0< <1, 7= const.}

Originally introduced by Kohlrausch (1854 ) (Pogg. Ann. Phys.
chem. 91, 179) for the fitting of dielectric loss data. He
measured (3 for glasses and a modern fit to his data give
B =0.426. Remains a good estimate, 150 years later!

Found empirically in many different amorphous
materials as for instance in many polymers and glass-
like materials near the glass transition temperature



Stretched exponential function

Stretched exponential
o(t) = exp(-t")

Anisotropy
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KWW and Levy distributions

Expands into a weighted superposition of ordinary exponential decay

functions, with a weighting function which is expressible in terms of a
Levy (stable) distribution:

¢ﬁ(r)=§ ["Ly (21 wyexp(—t/ wydu

Because of this connection with the statistics of stable laws, the KWW
relaxation properties may be argued to develop naturally through the
dynamics
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ac-conductivity

» Universality of ac (alternating-current) conduction, which,
for a range of relatively high frequencies, is expressible in
terms of a power-law dependence of the real part of

conductivity on frequency

o'(w)c o 0<n<l

« Often found in disordered insulators and semi-conductors,
iIncluding doped materials. A good estimate: n between
0.54 and 0.62 (sacobs et al., J. Phys. Chem. B 110, 20143 (2006))



Universality means...

[1 n values do not depend on the details of the underlying
conducting lattice, nor on the microscopic charge
transport mechanisms operating in the system (i.e.,
classical barrier crossing for ions and/or quantum
mechanical tunneling for electrons)

« Both n and 3 depend on the chemical composition of the
material and the absolute temperature
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Universality demonstrated
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Dyre & Schrgder, Rev. Mod. Phys. 72, 873 (2000).




Power-law ac conduction coefficient
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Derives from a model, in which the
conduction occurs as a result of
random walks of charged particles

on a percolating cluster (Milovanov and
Rasmussen, PRB 64, 212203 (2001); 66, 134505

(2002))

Universality of ac conduction is
rooted in the universality of the
percolation transition.

Hopping of charge between the
localized states of the lattice

Cycles and dead-ends of the fractal
acting as potential wells for the
moving charged-particles

Using the known estimates for the percolation exponents: n = 0.6 in 3d
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Response function

Homogeneous, isotropic dielectric exposed to external polarizing E = E(¢, )

P(t,r) = /_+OO x(t —tE(, r)dt

X(t — t") response (memory) function; Causality: x(t —t') =0 for t < ¢/

E(t,r) =E(r)é(t) — P(t,r) =E(r)x(t), x(t) response to a delta-pulse.

11



KWW relaxation function

Assume

b(t) = O(—t) exp (vt) + () exp [~ (¢/7)"]

() = 225 190) exp [ (/)"

Stretched exponential relaxation function ¢(t) — x(t) with power law decay
tP=1 (t < 1), with stretched exponential cut-off (¢ > 7).

Fourier transforming

0 “+ 00
d(w) :/_ exp(ut)emdt—l—/o exp[—(t/7)Ple™tdt

6(0) = 7Q(um) + i (Viwr) — 1)

wT

The Levy functions:

+00 o0
Q(z) 2/0 exp (—uP) cos (uz)du; V(z) 2/0 exp (—uP) sin (uz)du
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AC-conductivity

Levy functions series expansion:

X n—1 1 TI'(ng+1l) . nBr Kaatz et al, Macromolecules
Q(z) =2 (1) T(nt1) S 73~ 29, 1666 (1996).
Montroll & Bendler, J. Stat.
_ \© n_1 T(nB+1) nBn Phys. 34, 129 (1984).

Define complex x(w) as Fourier pair with x(t), and use x(t) = —d¢/dt
X(w) =iwop(w) =1 — wrV(wr) + iwTQ(wT)
Leading terms in the expansions: y(w) o< w7

€' (w) + i€ (w) =1+ 4drx(w) and o' (w) = we” (w)/4m
Kramers-Kronig relation:

o'(w)xw!™ — n=1 —E

13



Power spectral density

PSD of polarization field

S(w) = {P(w,r)[") = [x(w)[*{|E(w,r)[*)

PSD for uncorrelated white noise drive : S(w) = |x(w)|?

Power law regime for w7r >1
14



Self-consistent relaxation model

Goal: to obtain the KWW decay function self consistently

Assume no external field and look for the response to the inherent E-
field generated by polarization charge distribution p(t,r)

P(t,r)=P0,r)+ £ y(—tHE({  r)dt

J(t,r)= Lt o(t—t"E(t,r)dt

where the polarization current is obtained as time derivative of the
polarization field:

O O
Jj(t,r)= ﬁP(t, )=o(t—t) dZ(t t)

15



Electrostatic dynamics

Electrostatic equations:

V- -E(t,r)=4rpo(t,r)
V-P(t,r)=—p(t,r)

Polarization and electric source fields are self-
consistently determined by the distribution of the

polarization charges

The continuity equation:

gpa,r)w-j(r,r):o

16



Evolution of charge density

7
5,0
7
5,0

i
=P

<
=P

(t,r)=—-V-j(t,r)
(t,r)=-V- |' ot~ tEW,r)di
(t,r)=— | ot~V E@,r)d

(t,r) =47 | ot —1lt',r)d’
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Laplace transformed charge density

S,O(S,I")—,O(O,I’) =—4 ﬂG(S),O(S,I/')
Separating variables...
p(s,r) = P(s)g(r)

we find

H(s) = pO) 1

s+4rno(s) s+4ro(s)

where we set $(0) = 1 as the initial condition...

18



Postulate power law ac conduction
The form of the ac conduction coefficient...
o(s)=as”
1
s+ 4 os”

...results in ¢(S) —

Inverse Laplace transform:
J‘+z‘oo eSt T_'B =4 rox

1
t)=—— das
¢( ) Y i i o T—,BSI—,B where ,8:1_77

The definition of Mittag-Leffler function: Es[—(t/7)"]

Metzler & Klafter, Phys. Rep. 339, 1 (2000);
Sokolov et al. Phys. Today 55, 48 (2002)



Mittag-Leffler function

Series expansion

N, v (¢/7)"”
¢<r>—§( ) FOBT)

For short times, the behavior is stretched-exponential:

§(t) = exp [-(t/ 7)" IT(B+1)]

This closed analytical form replicates the KWW decay
function: thus given a power law ac conductivity
results in stretched exponential decay: 5 =1 —

20



Fractional derivative representation
s"< D]
Riemann-Liouville fractional operator

L o plr) .,
I'Ad=—n)a “°@—1t")"

ODtnp(tar):

Provides an extension of the ordinary time derivative to
fractional order

21



Fractional relaxation equation

sp(s,r)— p(0,7)=—4 ras" p(s,r)
S,O(S,I/')—,O(O,V)Z—T_'BSI_ ,O(S,V)

In the time domain...

o 5 AL
Ep(t,r):—r 7 D7 o(t,r)

which extends the ordinary relaxation equation to processes
with memory as due to the Riemann-Liouville operator

22



Conclusions

 The KWW decay function can be obtained analytically
from a self-consistent model of dielectric relaxation, in
which both the polarization and electric source fields are
self-consistently generated by the residual charge-density

« The exponent of the KWW decay function is related to the
exponent of the ac conduction coefficient via = 1-n

* The relaxations are described by a fractional extension of
the relaxation equation, which naturally incorporates the
power-law dependence of the ac conduction coefficient on
frequency

23



