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A rich variety of materials with structural disorder reveal a dielectric relaxation that is 
not described by the standard exponential (i.e., Debye like) decay with a specific decay 
time. Rather the dielectric properties are described by a stretched exponential decay, 
φ(t) = exp{-(t/τ)β}, the so-called Kohlrausch-Williams-Watts (KWW) relaxation func-
tion, with the exponent 0 < β ≤ 1. These materials additionally reveal universality in the 
dependence of the ac (alternating current) conductivity on frequency, expressed 
through σ(ω) ≈ ωη, where 0 < η ≤ 1. These results are mainly empirically; based on 
observations in various amorphous materials as polymers and glass like materials near 
the glass transition temperature. The physical origin and the statistical-mechanical 
foundation of these behaviors have been a matter of active research for the last dec-
ades; however, detailed understanding is still lacking.   

Here we will discuss the properties of dielectric relaxation in disordered materials and 
the connection to the ac conduction properties. We demonstrate that the exponents β 
and η are connected through the relation: η = 1-β. The key issues are, the stretched 
exponential character of dielectric relaxation, a power-law power spectral density, and 
the anomalous dependence of ac conduction coefficient on frequency. We describe the 
KWW relaxation kinetically by applying the formulation in terms of fractional calculus, 
and we propose a systematic derivation of the fractional relaxation and fractional diffu-
sion equations from the basic properties of the materials. 
 
References: 
A. V. Milovanov, K. Rypdal, and J. J. Rasmussen, Phys. Rev. B (2007) submitted for 
publication. 
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• Relaxation and ac conduction in materials with molecular 

or structural disorder 

• Examples: amorphous materials, polymers, glass-like 

near the glass transition temperature 

• Connection between the dielectric relaxation and the ac 

conduction properties

• Self-consistent dynamical relaxation model

• Derivation of fractional relaxation equation

• Conclusions

Outline

Milovanov et al., Submitted for publ. 2007; arXiv:0705.4417v1 [cond-mat.dis-nn]

Milovanov et al., Submitted for publ. 2007; arXiv:0707.3957v1 [physics.gen-ph]
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Many materials with a disordered structure have two 

important properties in common...

Many materials with a disordered structure have two 

important properties in common...

1. Non-exponential, non-Debye character of dielectric 

relaxation, often described by a stretched exponential 

Kohlrausch-Williams-Watts (KWW) decay function

2. Universality of ac (alternating-current) conduction, 

which, for a range of relatively high frequencies, is 

expressible in terms of a power-law dependence of the 

real part of conductivity on frequency

1.1. NonNon--exponential, nonexponential, non--Debye character of dielectric Debye character of dielectric 

relaxation, often described by a stretched exponential relaxation, often described by a stretched exponential 

KohlrauschKohlrausch--WilliamsWilliams--Watts (KWW) decay functionWatts (KWW) decay function

2.2. Universality of ac (alternatingUniversality of ac (alternating--current) conduction, current) conduction, 

which, for a range of relatively high frequencies, is which, for a range of relatively high frequencies, is 

expressible in terms of a powerexpressible in terms of a power--law dependence of the law dependence of the 

real part of conductivity on frequencyreal part of conductivity on frequency

Common dynamical properties

(t) = exp[ (t/ ) ]; 0 < 1; = const.(t) = exp[ (t/ ) ]; 0 < 1; = const.

0( ) 0 < 10( ) 0 < 1



4

Stretched exponetial relaxation, KWW

(t) = exp[ (t/ ) ]; 0 < 1; = const.

KohlrauschKohlrausch--WilliamsWilliams--Watts (KWW) decay functionWatts (KWW) decay function

(t) = exp[ (t/ ) ]; 0 < 1; = const.

Originally introduced by Originally introduced by KohlrauschKohlrausch (1854)(1854) ((PoggPogg. Ann. Phys. . Ann. Phys. 

Chem.Chem. 9191, 179), 179) for the fitting of dielectric loss data. He for the fitting of dielectric loss data. He 

measuredmeasured for glasses and a modern fit to his data give for glasses and a modern fit to his data give 

Remains a good estimate, Remains a good estimate, 150 years later!150 years later!

Williams & Watts, Trans. Faraday Soc 66, 89 (1970

FoundFound empiricallyempirically in many different amorphous in many different amorphous 

materials as for instance in many polymers and glassmaterials as for instance in many polymers and glass--

like materials near the glass transition temperaturelike materials near the glass transition temperature
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Stretched exponential function

Phenomenological fitting tools or they reflect Phenomenological fitting tools or they reflect 

properties of fundamental significance?properties of fundamental significance?

Example of fitting
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Expands into a weighted superposition of ordinary exponential decay 

functions, with a weighting function which is expressible in terms of a 

Lèvy (stable) distribution:

Because of this connection with the statistics of stable laws, the KWW 

relaxation properties may be argued to develop naturally through the 

dynamics

Expands into a weighted superposition of ordinary exponential deExpands into a weighted superposition of ordinary exponential decaycay

functions, with a weighting function which is expressible in terfunctions, with a weighting function which is expressible in terms of a ms of a 

LLèèvyvy (stable) distribution:(stable) distribution:

Because of this connection with the statistics of stable laws, tBecause of this connection with the statistics of stable laws, the KWW he KWW 

relaxation properties may be argued to develop relaxation properties may be argued to develop naturallynaturally through the through the 

dynamicsdynamics

dtLt )/exp()/(
0

1,2

KWW and Lévy distributions

Scaled Lévy distributions for various values of ; 0.1 to 0.9
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• Universality of ac (alternating-current) conduction, which, 

for a range of relatively high frequencies, is expressible in 

terms of a power-law dependence of the real part of 

conductivity on frequency:

• Often found in disordered insulators and semi-conductors, 

including doped materials. A good estimate: between

0.54 and 0.62 (Jacobs et al., J. Phys. Chem. B 110, 20143 (2006))

• Universality of ac (alternating-current) conduction, which, 

for a range of relatively high frequencies, is expressible in 

terms of a power-law dependence of the real part of 

conductivity on frequency::

• Often found in disordered insulators and semi-conductors, 

including doped materials. A good estimate: between

0.54 and 0.62 (Jacobs et al., J. Phys. Chem. B 110, 20143 (2006))

0 1

ac-conductivity
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values do not depend on the details of the underlying 

conducting lattice, nor on the microscopic charge 

transport mechanisms operating in the system (i.e., 

classical barrier crossing for ions and/or quantum 

mechanical tunneling for electrons)

• Both and depend on the chemical composition of the 

material and the absolute temperature

values do not depend on the details of the underlying values do not depend on the details of the underlying 

conducting lattice, nor on the microscopic charge conducting lattice, nor on the microscopic charge 

transport mechanisms operating in the system (i.e., transport mechanisms operating in the system (i.e., 

classical barrier crossing for ions and/or quantum classical barrier crossing for ions and/or quantum 

mechanical tunneling for electrons)mechanical tunneling for electrons)

•• BothBoth andand depend on the chemical composition of the depend on the chemical composition of the 

material and the absolute temperaturematerial and the absolute temperature

Universality means...



9DyreDyre & Schr& Schrøøder,der, Rev. Mod. Rev. Mod. PhysPhys.. 7272, 873 (2000)., 873 (2000).

Universality demonstrated
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• Derives from a model, in which the 

conduction occurs as a result of 

random walks of charged particles 

on a percolating cluster (Milovanov and 

Rasmussen, PRB 64, 212203 (2001); 66, 134505

(2002))

• Universality of ac conduction is 

rooted in the universality of the 

percolation transition. 

• Derives from a model, in which the 

conduction occurs as a result of 

random walks of charged particles 

on a percolating cluster (Milovanov and 

Rasmussen, PRB 64, 212203 (2001); 66, 134505

(2002))

• Universality of ac conduction is 

rooted in the universality of the 

percolation transition. 

Hopping of charge between the 

localized states of the lattice

Cycles and dead-ends of the fractal 

acting as potential wells for the 

moving charged-particles

Power-law ac conduction coefficient

Using the known estimates for the percolation exponents: Using the known estimates for the percolation exponents: in 3din 3d

( )



11

Response function

Homogeneous, isotropic dielectric exposed to external polarizing E = E(t, r)Homogeneous, isotropic dielectric exposed to external polarizing E = E(t, r)

P(t, r) =

Z +

(t t0)E(t0, r)dt0

(t t0) response (memory) function; Causality: (t t0) = 0 for t < t0

E(t, r) = E(r) (t) P(t, r) = E(r) (t), (t) response to a delta-pulse.

P(t, r) =

Z +ZZ
(t t0)E(t0, r)dt0

(t t0) response (memory) function;ff Causality: (t t0) = 0 foff r t < t0

E(t, r) = E(r) (t) P(t, r) = E(r) (t), (t) response to a delta-pulse.

(t) = ( t) (0) exp ( t) + (t)

µ
(0)

Z
t

0

(t0) dt0
¶

(0) =
R
0

(t) dt 1

(t) =
d

dt

(t) = ( t) (0) exp ( t) + (t)

µ
(0)

Z
t

0

ZZ
(t0) dt0

¶

(0) =
R
0

RR
(t) dt 1

(t) =
d

dt

E(t, r) = E(r) ( t) exp ( t) with +0; (t) Heaviside stepfunction

P(t, r) = E(r) (t); (t) : relaxation function.

E(t, r) = E(r) ( t) exp ( t) with +0; (t) Heaviside stepfunction

P(t, r) = E(r) (t); (t) : relaxation function.
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KWW relaxation function
Assume

(t) = ( t) exp ( t) + (t) exp [ (t/ ) ]

(t) =
(0)
t 1 (t) exp [ (t/ ) ]

Stretched exponential relaxation function (t) (t) with power law decay
t 1 (t < ), with stretched exponential cut-o (t > ).

Assume
(t) = ( t) exp ( t) + (t) exp [ (t/ ) ]

(t) =
(0)
t 1 (t) exp [ (t/ ) ]

Stretched exponential relaxation function (t) (t) with power law decay
t 1 (t < ), with stretched exponential cut-o (t > ).

Fourier transforming

( ) =

Z 0

exp( t)ei tdt+

Z +

0

exp[ (t/ ) ]ei tdt

( ) = Q( ) + i

µ
V( )

1
¶

The Lèvy functions:

Q(z) =

Z +

0

exp ( u ) cos (uz)du; V(z) =

Z +

0

exp ( u ) sin (uz)du

Fourier transfoff rming

( ) =

Z 0ZZ
exp( t)ei tdt+

Z +

0

ZZ
exp[ (t/ ) ]ei tdt

( ) = Q( ) + i

µ
V( )

1
¶

The Lèvy funff ctions:

Q(z) =

Z +

0

ZZ
exp ( u ) cos (uz)du; V(z) =

Z +

0

ZZ
exp ( u ) sin (uz)du
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Kaatz et al, Macromolecules  

29, 1666 (1996).

Montroll & Bendler, J. Stat. 

Phys. 34, 129 (1984).

Define complex ( ) as Fourier pair with (t), and use (t) = d /dt

( ) = i ( ) = 1 V( ) + i Q( )

Define complex ( ) as Fourier pair with (t), and use (t) = d /dt

( ) = i ( ) = 1 V( ) + i Q( )

AC-conductivity

Lèvy functions series expansion:

Q(z) =
P

n=1( 1)n 1 1
zn +1

(n +1)
(n+1) sin

n

2

V(z) =
P

n=0( 1)n 1
zn +1

(n +1)
(n+1) cos

n

2

Lèvy functionff s series expansion:

Q(z) =
P

n=1( 1)n 1 1
zn +1

(n +1)
(n+1) sin

n

2

V(z) =
P

n=0( 1)n 1
zn +1

(n +1)
(n+1) cos

n

2

Leading terms in the expansions: ( )

²0( ) + i²00( ) = 1 + 4 ( ) and 0( ) = ²00( )/4
Kramers-Kronig relation:

0( ) 1 = 1

Leading terms in the expansions: ( )

²0( ) + i²00( ) = 1 + 4 ( ) and 0( ) = ²00( )/4
Kramers-Kronig relation:

0( ) 1 = 1
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Power spectral density

PSD of polarization field

S( ) = h|P( , r)|2i = | ( )|2h|E( , r)|2i

PSD of polarization field

S( ) = h|P( , r)|2i = | ( )|2h|E( , r)|2i

PSD for uncorrelated white noise drive :

Power law regime for 

S( ) = | ( )|2S( ) = | ( )|2

> 1> 1
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j (t,r) (t t )
0

t

E(t ,r)dt

Assume no external field and look for the response to the inherent E-
field generated by polarization charge distribution 

tdrtEttrPrtP
t

),()(),0(),(
0

)()(),(),( tt
t

ttrtP
t

rtj

where the polarization current is obtained as time derivative of the 

polarization field:

Self-consistent relaxation model 

Goal: to obtain the KWW decay function self consistently

(t, r)(t, r)
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Electrostatic equations:

E(t,r) 4 (t,r)

P(t,r) (t,r)

Polarization and electric source fields are self-

consistently determined by the distribution of the 

polarization charges

Electrostatic dynamics

t
(t,r) j(t,r) 0

The continuity equation:
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t
(t,r) j(t,r)

t
(t,r) (t t )

0

t

E(t ,r)dt

t
(t,r) (t t ) E(t ,r)

0

t

dt

t
(t,r) 4 (t t )

0

t

(t ,r)dt

Evolution of charge density
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s (s,r) (0,r) 4 (s) (s,r)

Laplace transformed charge density

Separating variables...

(s,r) (s)g(r)

we findwe find

(s)
(0)

s 4 (s)

1

s 4 (s)

where we set (0) = 1 as the initial condition...
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The form of the ac conduction coefficient...The form The form ofof the ac conduction coefficient...the ac conduction coefficient...

(s) s

...results in (s)
1

s 4 s

Postulate power law ac conduction

(t)
1

2 i

est

s s1i

i

ds
4

1where

Inverse Laplace transform:

The definition of Mittag-Leffler function: E [ (t/ ) ]

Metzler & Klafter, Phys. Rep. 339, 1 (2000); 

Sokolov et al. Phys. Today 55, 48 (2002)

EE [ (t/ ) ]
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For short times, the behavior is stretched-exponential:

(t) ( 1)n

n 0

(t / )n

(n 1)

(t) exp (t / ) / ( 1)

This closed analytical form replicates the KWW decay 

function: thus given a power law ac conductivity 

results in stretched exponential decay:

Mittag-Leffler function

Series expansion

= 1= 1



21

s 0D̂t

0 D̂t (t,r)
1

(1 ) t

(t ,r)

(t t )0

t

dt

RiemannRiemann--Liouville fractional operatorLiouville fractional operator

Provides an extension of the ordinary time derivative to

fractional order

Fractional derivative representation
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t
(t,r) 0D̂t

1 (t,r)

s (s,r) (0,r) 4 s (s,r)

s (s,r) (0,r) s1 (s,r)

In the time domain...In the time domain...

which extends the ordinary relaxation equation to processes

with memory as due to the Riemann-Liouville operator

Fractional relaxation equation
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• The KWW decay function can be obtained analytically 
from a self-consistent model of dielectric relaxation, in 
which both the polarization and electric source fields are 
self-consistently generated by the residual charge-density

•• The exponent of the KWW decay function is related to the The exponent of the KWW decay function is related to the 

exponent of the ac conduction coefficient via exponent of the ac conduction coefficient via 

• The relaxations are described by a fractional extension of 
the relaxation equation, which naturally incorporates the 
power-law dependence of the ac conduction coefficient on 
frequency

Conclusions


