

1856-50

2007 Summer College on Plasma Physics

30 July - 24 August, 2007

High Field Physics and Collective Vacuum Effects

M. Marklund University of Umea Sweden

High Field Physics and Collective Vacuum Effects

Mattias Marklund

Department of Physics, Umeå University, Sweden and Centre for Fundamental Physics, RAL, U.K.

Summer College on Plasma Physics, Abdus Salam ICTP, Trieste, Italy, August 19, 2007

Overview

- Why? What are the interesting features of high field physics?
- How? Can we achieve strong enough focal intensities?
- Examples. Some issues regarding quantum field theory are presented.
- Conclusions what the future might bring.

Recent developments

- New developments in extreme plasma systems and lasers. (M. Dunne, Nature Phys. 2, 2 (2006); M. Buchanan, Nature Phys. 2, 721 (2006))
- Current divide: relativistic optics & nonlinear QED. (G. Mourou et al., RMP 78, 309 (2006); M. Marklund & P. K. Shukla, ibid., 591 (2006); Y.I. Salamin, S.X. Hu, K.Z. Hatsagortsyan, & C.H. Keitel, Phys. Rep. 427, 41 (2006))
- New developments in numerical and experimental tools. (e.g. R.A. Fonseca, Proc. HPCPAST 2002; R. Trines et al., PRL 94, 165002 (2005))
- Near future importance: laboratory astrophysics, e.g. hydro, nuclear astro. (B.A. Remington et el., RMP 78, 755 (2006))
- Questions in fundamental physics, e.g.
 - Photon-photon scattering. (J. Schwinger, PR 82, 664 (1951); D. Bernard et al., Eur. Phys. J. D 10, 141 (2000); E. Lundström et al., PRL 96, 83602 (2006))
 - Hawking-Unruh effect. (S.W. Hawking, Nature 248, 30 (1974); W. Unruh, PRD 14, 870 (1976); P. Chen & T.Tajima, PRL 83, 256 (1999); R. Schützhold et al., PRL 97, 121302 (2006))
 - Axion-like particle searches. (F.Wilczek, PRL 40, 279 (1978); E. Zavattini et al., PRL 96, 110406 (2006))

Why high field physics?

Astrophysical environments

Modifications of Standard Model

Symmetry breaking?

A touch of quantum gravity

- Thermodynamics
- Quantum fields
- Spacetime structure

⇒ ??

High field generation

- Many high field phenomena directly tractable with next generation laser systems.
- Some phenomena require intensities above current experimental limits.
- Attosecond electron bunches creates mirror (Naumova et al., PRL 92 and 93 (2004); Nees et al., J. Mod. Opt. 52 (2005); Thaury et al., NPhys. (2007)).

Opportunity to reach the Schwinger field $\sim 10^{29} \, {\rm W/cm^2}$

Fundamental physics with lasers

- Relativity + uncertainty principle quantum vacuum (virtual pair plasma).
- Coherent photon probe ideal.
- Lowest mass excitation in vacuum: electrons and positrons.
- Even before Schwinger field is reached, vacuum becomes weakly nonlinear.
- Stimulated processes.

Electrostatic potential strong enough to separate virtual pairs a Compton wavelength.

The quantum vacuum

- Classically, photons in vacuum indifferent to each other.
- Quantum field theory: vacuum nontrivial, due to Heisenberg's uncertainty relation and relativistic mass-energy equivalence.
- Pair creation (e.g. Burke et al., PRL 79, 1626 (1997)), high-frequency or intense photons.
 - Positronium interaction with laser: Small scale muon pair collider! (Müller et al. PRD 74, 074017 (2006))
 - Constant of the set of
 - Gamma source.

Some vacuum effects

I. Lamb shift and anomalous magnetic moment of electron.

2. Casimir effect:

Predicted 1948, measured 1997. I atm at 10 nm, important in nano-mechanics (T. Emig, PRL 98, 160801 (2007)).

3. Photon interactions.

b. Photon splitting

c. Photon-photon scattering?

The quantum vacuum

 Light-by-light scattering: Low-frequency cross-section and lagrangian

$$\sigma_{\gamma\gamma} \approx 0.7 \times 10^{-29} \left(\frac{\hbar\omega}{1 \,\mathrm{MeV}}\right)^6 \,\mathrm{cm}^2$$

$$\mathcal{L} = \mathcal{L}_0 + \frac{\epsilon_0 \alpha}{90\pi E_{\text{crit}}^2} \left[\left(E^2 - c^2 B^2 \right)^2 + 7c^2 (\boldsymbol{E} \cdot \boldsymbol{B})^2 \right]$$

 $E_{
m crit} \approx 10^{16} \, {
m V/cm} \rightarrow 10^{29} \, {
m W/cm}^2$ $eE_{
m crit} \times rac{\hbar}{m_e c} = m_e c^2$ Work times distance = rest mass

Peak in cross-section at electron mass. Cross-section only five orders of magnitude below Thomson. Optical regime —> 40 orders of magnitude smaller than Thomson!

Laser detection schemes

- "Clean" experiment on the nonlinear quantum vacuum: four-wave mixing in vacuum, 3D setup (D. Bernard et al., EPJD 10, 141 (2000); E. Lundström et al., PRL 96, 083602 (2006)).
- Laser parameters: two 800 nm 15 J pulses of 0.5 PW each, 10²² W/cm², 0.07 photons/shot.
- Deviations: sign of new physics? (Breaking of Lorentz invariance, axions, low energy quantum gravity effects and extra dimensions (e.g. Davoudiasl, PRD 60, 084002 (1999)))

PRL 96, 083602 (2006)

Colliding light pulses

Two light pulses are allowed to collide. Criteria for vacuum collapse:

$$\left(\frac{\alpha}{90\pi}\right)^{1/2} \frac{|E|}{E_{\rm crit}} > \frac{r_p}{\lambda_p}$$

which has to be supplemented with

expressing that the pulse length has to be sufficiently long for collapse to occur. See also Kharzeev & Tuchin, PRA 75, 043807 (2007).

Dynamic vacuum effects

Marklund et al., PRL 91, 163601 (2003); PK. Shukla & B. Eliasson, PRL 92, 073601 (2004) Marklund & Shukla, RMP 78, 591 (2006)

Possible future studies

- Although speculative, collective incoherent quantum vacuum effects could possibly be studied using extremely heated cavities.
- Generation of radiation gas focal spot.
- Why? Approaching the Schwinger intensity: truly nonlinear QED vacuum.
- Could detect vacuum effects in incoherent system.

Harmonic generation

Third harmonic generation from laser focusing in QED vacuum. (Fedotov & Narozhny, PLA 362, 1 (2007))

- Considered as a possible source of pair plasma. (N.B. Narozhny et al., PLA 330, 1 (2004))
- New nonlinear physics (as in laser-plasma case), higher harmonics?

Gravity and QFT

Unruh-effect (W. Unruh, PRD 14, 870 (1976)):

$$k_B T_U = \frac{\pi a}{2\pi c}$$

- Test of curved spacetime effects in quantum field theory.
- Insight into Hawking radiation and black holes? (S.W. Hawking, Nature 248, 30 (1974)) ħa

$$r_B T_H = \frac{\pi g}{2\pi a}$$

- $T_H \leftrightarrow T_U$: Experiment? (Chen & Tajima, PRL 83, 256 (1999); Schützhold et al., PRL 97, 121302 (2006))
 - Charged particles in intense laser field; window in Larmor radiation.

Detection of Unruh effect

 Experimental idea: use spectral properties of Unruh radiation (G. Brodin et al., submitted to PRL (2007)).

• Unique soft x-ray signature.

Conclusions

- Possible to experimentally probe uncharted quantum field theory sectors.
- Laser probes of photon-photon scattering.
 - Clean experiment, benchmark experiment?
 - Enhancement in plasma environments?
 - Low energy quantum gravity test.
- Interesting future possibilities:
 - Collective quantum vacuum effects.
 - Higher harmonic generation.
 - Hawking-Unruh tests and spacetime effects in quantum field theory.
 - Small scale particle colliders.
 - Pair production and coherent gamma sources.