

Chemistry with Droplets

Han Gardeniers MESA+ Institute for Nanotechnology University of Twente

Summer School in Nanofluidics ICTP, Trieste, Italy

A challenge in synthetic chemistry research

• In e.g. pharmaceutical research, there is a need to screen many many different chemical substances for their activity

- Down the line of medicine development, the production process for selected substances has to be optimized
- To save resources and the environment the volume of reactants, solvents and waste should be minimized
- So there is need for performing chemical reactions at as many different conditions as possible, in parallel, in small volumes.

Basic reactor designs

batch continuous flow

stirred continuously products collected at end of proces

Small batch reactors in parallel

Synthesis Robot: -Combination of Software and Hardware -Reaction Block: -40 to 150°C, Filtration, Washing -Programmed stirring -Inert Gas / Vacuum / Pressure -Fluid Handling

University of Twente The Netherlands

Chip-based microreactors

- complex microfluidic networks (e.g. for concentration series***)
- dangerous reaction conditions (high temperature, high pressure, toxic or explosive chemicals) can be tested safely because of small volumes and high heat transfer rates
- resources and waste are reduced
- a high surface-to-volume ratio helps when phase transfer or heterogeneous catalysis is involved

Reaction kinetic studies in parallel channels

W. Bula et al. IMRET9, Potsdam, sept. 2006

Test of parallel-processing concept

Transport of fluorescent dye plug through the chip. Total residence time ~ 1 min, flow rate $4 \times 0.4 \mu L/min$. Flow rate difference ~ 3 %.

This difference is caused by non-uniformity of silicon etching. Note that hydraulic resistance is proportional to the square of both channel depth and width. For example, a 1 μm variation on a nominal channel depth of 50 μm will give rise to 4% flow variation. A variation of 2% in etching rate over a 4 inch wafer is not uncommon and depends on feature size and locally exposed etched surface area (loading)

Axial (Taylor-Aris dispersion)

Axial dispersion in a microreactor

Taylor-Aris: axial concentration distribution evolves diffusively:

$$
D_{\text{eff}} = D\left(1 + \frac{1}{210} \cdot Pe^2 \cdot f\left(\frac{d}{W}\right)\right) = D\left(1 + \frac{1}{210}\left(\frac{U \cdot W}{D}\right)^2 f\left(\frac{d}{W}\right)\right)
$$

Plot of standard deviation in straight channel (dashed line) and in meandering channel (solid line) as a function of residence time for different values of the mass diffusion coefficient.

Typical dispersion: 6s/240s = 2.5 %

"Nanoreactors" in microreactors

cells (fermentation)

Saccharomyces cerevisiae

Micro titerplate with integrated sensors

two-phase systems

Fig. 1. Sketch of observed flow patterns in capillary channels. (a,b): bubbly flow, (c,d) segmented flow (a.k.a. bubble train flow, Taylor flow, capillary slug flow), (e) transitional slug/churn flow, (f) churn flow, (g) film flow (downflow only), (h) annular flow.

L-G, Taylor flow (slug flow)

From: A. Günther e.a. Lab Chip4, 2004, p.278

Mixing inside slugs

From: A. Günther e.a. Lab Chip4, 2004, p.278

Growth of nanoparticles in microchannels

A. Günther e.a., Lab Chip 4, 2004, 278

Institute for Nanotechnology

♦ **University of Twente The Netherlands**

Thin film in Taylor flow

From: M.T. Kreutzer e.a. Chem. Eng. Sci. 60, 2005, 5895

L-L, droplet formation in microchannels

Left movie from: T. Nisisako e.a., Lab Chip 2, 2002, 24

Time-periodic recirculating flow inside the droplets caused by the shearing interaction with the walls

H. Song, J.D. Tice and R.F. Ismagilov, *A microfluidic network for controlling reaction networks in time,* Angew. Chem. Int. Ed. 42, 2003, 768-772

Protein crystallization

Direct X-ray analysis in capillary

B. Zheng e.a. Angew. Chem. Int. Ed. 43, 2004, 2508

Electrical manupilation of droplets

Wetting and electrowetting

Review: F. Mugele e.a., J. Phys. Condens. Matter 17, 2005, p.S559

Dielectrophoresis: particle suspended in alternating E-field with magnitude or phase gradient experiences pos. or neg. forcedepending on whether particle is more or less polarizable than medium

Review: M.P. Hughes, Electrophoresis 23, 2002, 2569

Droplet manipulation by electric fields

Figure 8. A schematic of the electrical actuation of micro droplets prepared in a microchannel network

Higuchi, Torii and Yamamoto, University of Tokyo

Droplet manipulation by electric fields

T. Taniguchi e.a. Lab Chip 2, 2002, 19

Electro wetting on dielectric (EWOD)

V. Srinivasan e.a., Lab Chip 4, 2004, p.310

EWOD mixing

P. Paik e.a., Lab Chip 3, 2003, p.253

Mixer based on electro-wetting

Mixer Operation

Four Mixing Regimes

Left ⁼ DI / Right ⁼ Fluorescein **Four Mixing Regimes:**

at 250 V, 500 Hz: good mixing < 20 ms for 1 μl droplets without Joule heating

Eigenfrequency of supported drops

F. Celestini e.a. Phys. Rev. E 73, 2006, p. 041602 Flow pattern in droplet in DC electric field along X-axis, due to electrically induced surface stresses

Sozou, Proc. Royal Soc. London A 334 (1973) 343

Enzymatic reaction kinetics by MALDI-MS

Houston et al., Anal Chem 72 (14), 2000, 3311

Protein Tyrosine Phosphatase For k2>>k³ , detect EP Buildup

MALDI MS principle

Mixer + 2 more droplet pads

0.7 μL 50 μM YOP51 PTPase

20 mM p-nitrophenyl phosphate

MALDI Results

Reaction kinetics results

