

Nanofabrication principles

Summer School in Nanofluidics ICTP, Trieste, Italy

Han Gardeniers University of Twente j.g.e.gardeniers@utwente.nl

The micro/nanofluidic world

Biological flow systems: animal blood / lung / bone capillaries, plant veins

Man-made flow systems: porous solids, glass capillaries, fluidic chips

Top-down approach: same principle, smaller tools

from meters to millimeters to millimeters to micrometers

Top-down and bottom-up nanofabrication

Microelectronics Nanotechnology top-down approach, build in place bottom-up approach, self-assembly $0.1 - 10 \mu m$ $1 - 100$ nm

Batch microfabrication process (IC's)

copied from: MEMS Tutorial by M.A. Michalicek

The core technology: photolithography

University of Twente The Netherlands

Photolithography and pattern transfer

Typical equipment: mask aligners

Working environment: clean room

Microfluidic chips (3 layers) on 100 mm substrates (2 wafers) Different colours represent different material layers / processes

Institute for Nanotechnology

Mask fabrication e.g. by laser beam writing

High Accuracy Photomask and Direct Write Lithography Systems

Alignment and exposure systems

Limitations of optical lithography

Projection lithography works at Rayleigh diffraction limit.

Resolution:
$$
R = k_1 \frac{I}{NA}
$$

NA=numerical aperture (0.5-0.6) λ =wavelength k_1 depends on process $(0.4-0.8)$ Note: for these values, $\mathbf{R} \approx \lambda$

Depth of focus:
$$
DOF = k_2 \frac{I}{(NA)^2}
$$

Advanced litho: *k₂*=0.7

Timeline optical lithography

Today:

M. Rothschild et al, Lincoln Lab. J. vol.14, nr.2, 2003, p.221

Towards optical nano lithography

- Lower wavelengths: deep-UV excimer lasers KrF 248 nm, ArF 193 nm, F_2 157 nm* (lens/mask transmission issues)
- X-ray: $\lambda \approx 0.8$ nm (synchrotron source needed)
- Higher contrast photoresists (theoretical limit lines & spaces: $k_1=0.25^*$)
- Improved optics & immersion lithography, i.e. liquid between lens and substrate (*NA*=1.3* with water; absorption issues)
- $*R = 30$ nm, DOF = 65 nm
- scanning beam lithography: next slide

Direct-write electron beam lithography

At 100-keV e-beam energy, λ = 3.7 pm With typical NA ≈ 0.001 , $R \approx 4$ nm

Limitations: charging, speed

33nm Trenches ♦ **University of Twente The Netherlands**

Mask-less photolithography

Scanning electron-beam writing - see before (also possible with focused ion beams -see after)

Zone-plate array lithography

Holographic (interferometric) lithography

"Soft" lithography (imprint lithography)

Zone-plate array lithography

Zone-plate array lithography

SEM of Central Zones of λ = 400nm Zone Plate

(Left) Focusing principle of a zone plate. The zones are arranged such that light from adjacent zones interferes constructively at the focus.

(Right) Scanning electron micrograph of the central zones of a zone plate.

k1 =0.32, *NA*=0.85, *λ*=193nm: *R*≈70 nm

Principle: interference of two beams creates sinusoidal intensity gradient across substrate with photoresist. Period of interference pattern is:

$$
p = \frac{1}{2\sin\Theta}
$$

Thus, the exposed pattern can have a pitch smaller than λ

Some results: parallel lines in silicon

PEK/BARC on Silicon

Cleaved edge, silicon wafer-

 $P = 140$ nm ($\Theta = 72^{\circ}$)

- Resist thickness ca. 70nm
- BARC breakthrough etch using $O₂$ flash (100mTorr, 20sccm, 100W, 15s).
- RIE in O_2 : CHF₃ fluorine plasma (30mTorr, 5sccm:25sccm, 350W, $1min$).
- Gratings at P=140nm.

Residual BARC layer on a silicon ribbon of 10-15nm thickness.

R. Luttge et al., Laser interferometric nanolithography using a new positive chemical amplified resist, J. Vac. Sci. Technol. B, in press

Multiple exposure interference litho

18 Gbit/inch² array of photoresist dots on sputtered platinum thin film (R. Luttge et al. J. Vac. Sci. Technol. B, in press)

Change in nano-dot pattern leads to change in anisotropic wetting properties (R. Luttge, unpublished)

Soft lithography concepts

Nano imprint lithography (NIL)

Glassy state: no flow; rubbery state: reversible deformation; flow state: irreversible, viscous flow

For NIL: flow state needed: thermoplastic, non-crosslinked polymer (e.g. PMMA or PS) Empirical rule: Imprint at 70 to 100 °C above T_g **University of Twente**

G

The Netherlands

Example nanoimprint lithography

Silicon stamp (made by e-beam) Imprint into PMMA

Review: C.M. Sotomayor Torres et al. Mater. Sci. Eng. C 23, 2003, p. 23

Example nanoimprint lithography

High resolution NIL:

S. Y. Chou, Nanoimprint Lithography, Ch. 2 in: Alternative Lithography, C.M. Sotomayor Torres, Ed. 2003, Kluwer Academic, NY

Nanochannels by NIL

♦ **University of Twente The Netherlands**

Step-and-flash imprint lithography (SFIL)

imprint into low viscosity, photocurable organosilicon liquid

UV flood exposure for curing

stamp is:

a) hard & transparent (silica, quartz) for UV-NIL b) soft & transparent (PDMS) for "soft UV-NIL"

Picture property of Molecular Imprints Inc. University of Twente **The Netherlands**

G

Resist dispensing pattern

Picture property of Molecular Imprints Inc.

Step-and-stamp lithography

J. Ahopelto, T. Haatainen, Step and Stamp Imprint Lithography, Ch. 6 in: Alternative Lithography, C. M. Sotomayor Torres, Ed. 2003, Kluwer Academic, NY

Microcontact printing (μCP)

Example: Application of monolayers on gold

Slide courtesy of Jurriaan Huskens, MNF, MESA+ Y. Xia and G.M. Whitesides, Angew. Chem. Int. Ed. 37, 1998, 550

Industrial μCP: Philips' wave printer

Fig.4 Six inch silicon wafer comprising repeating 2x1cm² units of bottom gate plastic electronic test circuits with microcontact wave printed gate and source-drain gold electrodes.

Master & stamp fabrication

Hard, non-transparent stamps (NIL, SSIL): Si processing (optical lithography, e-beam)

Soft stamps (mCP, CFL, soft UV-NIL): hard masters via Si processing followed by replica molding

Hard, transparent stamps (UV-NIL, SFIL): silica/quartz processing:

Pattern transfer: Bulk machining

General procedure:

- Application of a masking (protective) material
- Patterning of material by photolithography and selective layer etching
- Selective bulk etching

Example: anisotropic etching of silicon

880 6721 85FEB9

The Netherlands

Example: Isotropic etching of silicon

Deep Reactive Ion Etching (DRIE)

Principle: $SF₆$ gas etches the silicon O_2 gas passivates the sidewalls

Isotropic or directional, depending on the settings

Deep RIE via "Bosch process"

University of Twente The Netherlands

Focused ion beam etching

Fluid metal

♦

is outce.

Source

control.

Surface micromachining: basic scheme

Institute for Nanotechnolog

deposition of sacrificial layer

patterning of sacrificial layer

deposition of structural layer

patterning of structural layer

Nano needles by surface micromachining

Institute for Nanotechnology

University of Twente The Netherlands

Nanochannels by directional etching and sacrificial layer etching

Step A from: Kim e.a. Appl. Phys. Lett. 79, 2001, p.3812 Complete proces: Tas e.a. Nanolett. 2, 2002, p.1031

Etching time (L = 0.64 mm) is 15 hrs !

Sacrificial layer removal requires patience

It took tens of ppms of the age of the universe (i.e. million years) for nature to remove the softer layer and create the arch

It takes tens of ppms of the age of a microfabrication expert (i.e. 100,000 seconds) to remove the sacrificial layer and create the nanochannel

Removal of layer in microchannel

2 μm poly-Si layer in 25 wt% KOH solution at 74 ◦C

J.W. Berenschot e.a. J. Micromech. Microeng. 12, 2002, p.621

Stiction caused by surface tension during drying

 z/h

Theoretical model: Mastrangelo e.a J.MEMS 2, 44 (1993)

Institute for Nanotechnology

Maximum dimensions without stiction

L, w, R_p are the length of the doubly clamped beam, width of the square plate and radius of the circular plate, respectively

How to use stiction

Tas e.a. Nanolett. 2, 2002, p.1031 **Etching time is 4 min.**

Nanochannels by etching and sealing

Void formation in a 6-μm-thick BPSG glass layer deposited over template ridges with *h=*6.4μm, *w=*4μm and *d=*3μm: a. as deposited, b. and c. annealed at 1050 °C for 4 and 12 hrs, resp. Annealing causes reflow of the glass layer

Callender e.a. J. Mater. Res. 20, 2005, p. 759

€ **University of Twente The Netherlands**

Nanochannels by etching and sealing

J. Haneveld e.a. J. Micromech. Microeng. 13, 2003, p. S62

Channels with integrated electrodes

Electrode deposition

Deposition silica insulation

CMP

Channel etching

Direct bonding

E.J. van der Wouden e.a. Coll. Surf. A 267, 2005, p. 110

Chemical mechanical polishing, CMP

Effects of CMP:

- Reduction of roughness
- Surface (chemical) conditioning
- Planarization

Nanochannels by assembly

Fabrication methods for forming and using polymer fibers. (A) drawing fiber from liquid polymer droplet

(B) attaching drawn fiber into second droplet to complete a suspended beam

(C) alternative to (B): drawing multiple suspended fibers in parallel

(D) overcoating polymer network

(E) dissolution of the polymer to produce a suspended capillary network

Nanofluidic interconnections

Harfenist e.a. Nanolett. 4, 2004, p.1931

♦ **University of Twente The Netherlands**

Nanofluidic interconnections

Harfenist e.a. Nanolett. 4, 2004, p.1931

♦ **University of Twente The Netherlands**

Bottom-up nanotechnology: atomic/molecular assembly using AFM

AFM with electrophoretic control of molecules

R.D. Piner e.a. Science 283, 1999, p. 661 S. Deladi e.a. Appl. Phys. Lett. 85, 2004, p. 5361 K. Unal e.a. Appl. Phys. Lett. 88, 2006, p. 183105 M.F. Crommie a.a., Science 262, 1993, p.218

Nanowires and nanotubes

Growth and representative structures of (a) uniform single-crystal semiconductor nanowires, (b) axial nanowire heterostructures, and (c) radial nanowire heterostructures.

C.M. Lieber, MRS Bulletin July 2003, p. 486

Carbon nanotubes

Image sequence of a growing carbon nanofibre. The images are acquired with TEM *in situ* with CH_4 : $H_2 = 1:1$, total pressure 2.1 mbar, sample heated to 536 °C. Scale bar, 5 nm.

Atomic-scale imaging of carbon nanofibre growth S. Helveg et al., *Nature* **427,** 426–429 (2004)

Liquid-filled carbon nanotube

Low magnification TEM micrographs showing a liquid plug in the nanotube.

Y. Gogotsi et al. Chem. Phys. Lett. 365 (2002) 354

€ **University of Twente The Netherlands**

Nanopores by anodization: silicon

34 94 2280

07KU 673X

77777777777777713 nm

Procedure and examples

Asymmetric pores in a silicon membrane acting as massively parallel brownian ratchets, S. Matthias & F. Müller, Nature 424, 53-57 (2003)

♦ **University of Twente The Netherlands**

Self-organization of pores in anodization of aluminum

Self-organization: mechanical stress induced, see A.-P. Li e.a., J. Appl. Phys. 84, 1998, p. 6023

Cross-section picture: A. Cai e.a., Nanotechnology 13, 2002, p. 627 http://www.mpi-halle.mpg.de/~porous_m/Si_pore_growth.html

Self-assembly in block co-polymers

Diagram of microdomain morphologies of diblock copolymers, for varying volume fraction of components. Morphologies range from spherical (S) to cylindrical (C) to gyroid (G) to lamellar (L). The molecular weight of the block copolymer dictates the size of the microdomains, typically 10 nm. From C.J. Hawker e.a., MRS Bull. Dec. 2005, p.952

Examples from M. Park e.a. Science 276, 1997, p. 1401

Self-assembly of lipids

Lipid vesicles and nanotubes

Microscopic liposome networks, filled with fluorescent dyes. Scale bars 10 μm.

A. Karlsson e.a., Nature 409, 2001,150

Formation of nanotube-vesicle networks. vesicle: 5 to 30 μm diameter, separation distance: 10 and 100 μ m, nanotube diameter: 100-300 nm.

A. Karlsson e.a. Anal. Chem. 75, 2003, p.2529

Summary fabrication methods

