
1858-19

School on Physics, Technology and Applications of Accelerator
Driven Systems (ADS)

Piero RAVETTO

19 - 30 November 2007

Politecnico di Torino, Dipt. di Energetica
10129 Torino

Italy

ADS Dynamics
"Accelerator-Driven System Dynamics - MACISTE Multi Amplitude Code

In Subcritical Transient Evaluation"

MACISTE
Multi Amplitude Code In Subcritical Transient Evaluation

Introduction

MACISTE was developed to solve the time-dependent multi-group diffusion equations in a 1D slab
system. It allows the comparison of the different approximations of dynamics neutron equations:

• full inversion of the problem (SK): it is considered as the benchmark solution;
• point kinetics (PK): it is the conventional approach used for the dynamics;
• multipoint kinetics (MPK): in this case the phase space is divided into region and each of

them evolves with a different amplitude.

The code is self-consistent, since it provides the steady-state solution. Both the direct and the
adjoint problems are solved and from these shapes the kinetics parameters for PK and coupling
coefficient for MPK are computed. An eigenvalue tool is implemented to allow the calculation of
the variation of the reactivity and to adjust the initial subcriticality.

Input

As a input, the code wants several files. In the following a description of each of them is provided.

‘input_mpk.txt’ : defines the name of the other files in which there are the properties of the system.

 It is recommended not to change this file.

‘geometry.txt’ : is used to define both the multi-slab geometry (width in cm) and the spatial

 discretization (number of mesh per region). The last line refers to the boundary
condition, which can be either of vacuum or reflection.

‘nucl_propr.txt’ : here nuclear properties are defined; the last line refers to the value of keff desired

by the user (i.e. fission cross section is adjust to being such that the system has the
right multiplication constant).

‘source.txt’ : the region in which there is the source neutron emission and the intensity (which is

 recommended to be one at the beginning of the transient).

‘perturbation.txt’ : defines the cause of the transient, which may be a variation of source intensity or

the perturbation of a cross section in a region. Firstly, the spatial behaviour of
the induced perturbation must be introduced (it can be a step or a ramp);
secondly, the source intensity is set (if ‘/’ no change). Finally the material
perturbation is defined: after having written the region in which it is localized (in
cm), the value must be introduced as a ratio of the perturbation over the initial
quantity.

 ‘dynamics.txt’ : set the parameter for the time dependent calculation. The first number refers to the

length of the transient, whereas the second to the time step. In the next section
there is the definition of the detector (1,2,3 are suggested; if 2 is chosen, pay
attention that each MPK zone contains a part with fission cross section different

from zero). Then the time mesh is specified (i.e. the number of time steps each
interval defined in ‘perturbation.txt’). The next input required refers to the choice
of a convex division of the phase space: is 1 is typed, the MPK region will be such
that the perturbation evolves separated from the remaining system. As an
alternative, one can introduce directly the division in cm. Lastly, there is the
possibility of improving the results of the approximated dynamics with the
recalculation of the shape on a coarser mesh (IQS).

Output

Outputs are organized in two folder, one related to the stationary calculation and the other to the
time-dependend solution. The ‘dinamica’ folder contain a file, named ‘OpzioniSimulazione.txt’,
which contain the parameter of simulation used. During the execution, on the command windows
will appear some data of interest of the dynamics, like the reactivity of the system after the
perturbation.

Test cases

Two test cases are provided, whose input are in ‘InputA’ and ‘InputB’. The procedure to run case A
is the following:

- copy the folder of the ‘InputA’ and rename it as ‘Input’;
- run the code from the command windows;
- read the output and plot the results (for instance using MATLAT or Excel).

The system under analysis is a 1D multislab three-group Masurca-like reactor.

Case A
‘InputA’ refers to a case in which an intensity variation of the source emission is introduced. As an
example, a switch-off is considered. Two points are considered, source plus driver.

Exercise:

a) analyse the results of the code: are there significant differences between PK and MPK?
b) Try to simulate an oscillation of the source (hint: change file ‘perturbation.txt’ introducing

other intervals).
c) Introduce an increase of reactivity (operating either on fission or on absorption cross

section) and reduce the rise of the power by operating on the source. Control the final
reactivity of the system.

Case B
‘InputB’ refers to a case in which there is a variation of fission cross section in a localized region.
The phase space division is made such that the perturbed region is separated form the rest of the
system (3 MPK regions).

Exercise:

a) analyse the results of the code: which between MPK and PK are conservative compared to
SK?

b) Plot the shape of the flux computed with SK, PK, MPK.

c) Try different borders of spatial subdivision. Plot the MPK results on a graphs to see the
influence.

d) Change the number of regions: 4 instead of 3. Decide which might be the best option;
e) Different intensity of the cross section perturbation. Decide the energy subdivision

depending on the perturbation;
f) Update of the shape: IQS. Compare with the case in which there is no IQS.
g) Change the number of recalculations of the shape and plot the curves on a graphs to see the

influence of recalculation on the accuracy of the solution. Keep record of the calculation
time.

Case C
‘InputC’ refers to a source switch-off followed by a .

Exercise:

a) analyse the results of the code: are there significant differences between PK and MPK?
b) Try different switch-off periods (in general: the longer the better PK performs!).

