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Sub-critical core design 
requirements and constraints

Proton Beam: 

350 MeV-5 mA

Spot size (FWHM)=15 mm (gaussian spatial 
shape assumed)

The initial keff ~ 0.95

Nominal power ~50 MWth

Fast neutron flux: ~ 1015 n/cm²s

Thermal neutron flux (inside IPS-like loop):   
1.0 – 2.0 1015 n/cm²s
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MYRRHA ADS:
Typical Core Configuration

102 channels 
Target-block hole fitted out within the 3 
central channels
Surrounding active zone loaded with 45 
fuel SA (30wt% Pu/HM; 91 pins/SA)
Outer reflector zone composed of 54 
“reflector” assemblies
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Core Analysis tools

Nuclear data (within table range; INC-model beyond): 
Neutrons: JEF2.2 (MCB-package) combined to 
LA150n(Pb, Bi and steel elements); 

LA150h or physical models for protons.

MCNPX 2.5.e beta version used:

Enables one to “mix-and-match” data 
tables having different upper energy 
boundaries and table data with INC models

ALEPH (home-made)code, coupling MCNPX 
and ORIGEN2.2 in a more efficient way, to 
carry out core burn-up calculations

Nuclear data: JEF2.2 processed using NJOY99.90
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Geometrical model

Updated and Completed

Fuel pin and assembly design revised
Assembly extension parts from the 
inlet nozzle through the outlet nozzle
Assembly and fuel-pin bundle grids
Core barrel and core suspension tube
Top lid and radial shielding concrete 
Top (pool) gas plenum
Spallation target loop (inner part)
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MYRRHA MODEL for MCNPX calculations
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MYRRHA MODEL for MCNPX calculations 
(cont’d)
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MYRRHA: general sketch

Emergency
heat exchangers

Interim fuel
storageHX-pump group

(2 HXs - 1 pump)

Spallation 
loop

Core

Fuel handling
machine
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Results

Comprehensive and reliable
set of results provided:

Reactivity effects 
Nuclear data sensitivity analysis
Operational sub-criticality margins
Consistent Power and Flux maps
Irradiation-induced damage parameters 
(DPA, gas-production)
MA and LLFP transmutation performances

Improved quality of document
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Overview of the MYRRHA core 
characteristics (BOL) 
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Sub-critical Core:
Assembly Power map
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Spallation target Heating

kW/cm3
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Pin-by-pin power map (hot assembly) and

linear power density curve (hot pin)
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Spectra and Flux
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DPA-damage and Helium-gas 
production in T-91steel pipe
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MA and LLFP transmutation:
Core loading

MA pellet vector

Pu/Am/Cm/Mg/O
238Pu/239Pu/240Pu/241Pu/242Pu
241Am/243Am 66.67/33.33

23.25/30.32/6.06/19.18/20.19
5.06/37.91/30.31/13.21/13.51

244Cm/245Cm 90/10

wt% fraction
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Neutron spectra in MA and LLFP 
samples
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MA and LLFP  (amounts in gram)
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Core configuration with IPS-like 
water-moderated loop
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Ks swing

∆ρ=-1667 pcm pcm/cycle (1cycle=90 EFPDs)                            
(i.e., -19 pcm/EFPD). 
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Fuel burn up after 90 EFPDs 
in MWd/kgHM)
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Assembly relative power at BOC and at 
EOC
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Fuel Assembly reactivity worth map
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Fuel Temperature (Doppler) effect  Doppler 
constant (KD = Tdk/dT)
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Fuel Temperature (Doppler effect) Doppler 
coefficient (dk/dT)
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Coolant Temperature (density) 
reactivity effect (dk/dT)
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Sensitivity to neutron cross-
section libraries

err errmax errint Ptable ks keff ∆ρ φ*
JEF 2.2 0.002 0.04 5.0E-7 yes 0.95961 0.95506 496 1.12

0.002 0.04 5.0E-7 no 0.95979 0.95578 437 1.10
ENDF 6.8 0.002 0.04 5.0E-7 yes 0.96881 0.95895 1061 1.33

0.001 yes 0.96470 0.95479 1076 1.29
0.001 0.01 5.0E-8 yes 0.96423 0.95435 1074 1.29

JEF 2.2 0.001 0.01 5.0E-8 no 0.96457 0.95568 964 1.26
0.002 0.02 1.0E-7 yes 0.96437 0.95509 1008 1.27
0.002 0.04 5.0E-7 yes 0.96464 0.95480 1068 1.29

ENDF 6.8 0.001 0.01 5.0E-8 yes 0.96898 0.95971 997 1.31
JEFF 3.0 0.001 0.01 5.0E-8 yes 0.96511 0.95533 1061 1.29

Optimal accuracy

Nuclear data
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Estimated operational sub-criticality 
margins
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Concluding remarks

The sub-critical core achieves a primary source neutron 
multiplication factor, ks, of 0.9600 (the keff-eigenvalue 
being 0.9552). The adopted sub-criticality level, -4686 
pcm, is larger enough to keep the MYRRHA core far 
away from criticality.

The reactivity swing induced by core burn-up amounts 
to about -19 pcm/EFPD starting from a fresh core

At 5 mA beam intensity, the sub-critical core delivers a 
thermal power of 51.75 MW. An additional 1.43 MW is 
deposited by the proton beam mainly inside the liquid 
metal spallation target. 

The average linear power density over the hottest pin is 
272 W/cm with the peak power limited to 352 W/cm.
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Concluding remarks

The targeted order of magnitude in fast flux, viz. 1015

n/cm2s, is achieved in the near of the hottest fuel pin. 

An accumulated dpa-damage dose up to 39 dpa over a 
3x90 EFPDs irradiation period may be expected along 
the spallation target pipe with appm(He)-to-dpa ratios 
up to 8.

MA transmutation has been investigated by considering 
six IMF-target assemblies, containing 7.24 kg of low 
graded plutonium, 9.04 kg of americium and 1.81 kg of 
curium, irradiated in fast spectrum channels during a 3-
years campaign (810 EFPDs in total). The calculations 
yield a net decrease of 2.48 kg in the actinide mass, 
mainly due to the removal of americium (-2.46 kg). 
There is net mass increase of 0.46 kg for curium. The 
burned-out mass of plutonium is 0.51 kg 
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Effect of proton beam spatial 
shape
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Proton beam option:
350 MeV-5 mA Vs. 600 MeV-2 mA
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350 MeV-5 mA Vs. 600 MeV-2 mA: 
Fast flux
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350 MeV-5 mA Vs. 600 MeV-2 mA: 
Fast flux
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350 MeV-5 mA Vs. 600 MeV-2 mA:  
Linear power density along the hottest pin
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350 MeV-5 mA Vs. 600 MeV-2 mA: 
DPA/270EFPDs along the target duct
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350 MeV-5 mA Vs. 600 MeV-2 mA: 
DPA/270EFPDs along the hottest pin clad



39Presented at the Workshop on “Technology and Applications of Accelerator Driven Systems” Trieste, 17-28 October 2005

Non-fission (external) neutron 
source distribution
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Proton particle distribution
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Concluding remarks

• A 600 MeV-2 mA driving proton beam is 
shown to yield similar core characteristics as a 
350 MeV-5mA proton beam 

• In the case of 600 MeV the flux and hottest 
fuel pin power are less peaked and the peak 
dpa-damage is also lower. 

• Moreover the target heating rate inside the 
liquid-metal spallation target is lower by a 
factor of two. 

• Calculations show that neither neutrons nor 
protons will reach the bottom of the tank.  No 
specific shielding is therefore required. 




