

1858-36

School on Physics, Technology and Applications of Accelerator Driven Systems (ADS)

19 - 30 November 2007

Thermal Hydraulics of Heavy Liquid Metal Target for ADS. Part I

> Polepalle SATYAMURTHY BARC - ADS Target Development Section Beam Technology Development Group 400085 Mumbai India

Thermal-hydraulics of Heavy Density liquid Metal Target for ADS

> P. Satyamurthy ADS Target Development Section Bhabha Atomic Research Centre Mumbai – 400085, India

Typical ADS Target Location

Requirement of neutrons for a typical ADS

- It depends on power of the Reactor
- It depends on k_{eff} of the reactor $k_{eff} \sim 0.95$ to 0.98

Typically requirement ~ 10¹⁸ - 10¹⁹ per second

Thermal-hydraulics of ADS target -Lecture-1

Contents:

- Suitable Spallation Target Material
- Heat deposition by High proton beam
- Why Liquid Target?
- Suitable Liquid Targets
- Methods of circulation for Target Module
- Windowless Target Systems
- <u>Window vs Windowless</u>
- <u>Typical target Configurations currently under study</u> in various institutions
- <u>Thermal-hydraulic and related Technology Issues of</u> <u>LBE Liquid Target System</u>

Suitable Spallation Target Material

Hybrid Nuclear Reactor-Nifenecker Etal

Neutron Yield for Different Proton Beam Energies – LBE target

Proton Energy	~Neutrons Produced per
(MeV)	proton
100	0.26
350	4.52
500	8.86
1000	25.3
1500	38.73
2000	50.1

<u>Note</u>

-Beyond ~ 1GeV proton energy, the neutron yield per GeV energy remains constant

-The energy deposition ($\frac{dE_p}{dx}$) by the beam is minimum ~1.2 Gev

This has a bearing on selection of beam energy for ADS

Possible Spallation Targets

Element	Atomic Mass (A)	Atomic Number (Z)	A/Z	Melting Temperat ure (ºC)	Boiling Temperat ure (ºC)	Density at room Temp (g/cc)
Pb	207	82	2.524	327	1725	11.36
Bi	209	83	2.518	271	1560	9.80
LBE	~208	~82.5	~2.52	125	Similar to Pb/Bi	~10.0
Hg	200	79	2.532	-38.36	357	13.54
U	238	92	2.590	1132.3	3818	19.07
Та	181	73	2.479	2996	5425	16.6
W	184	74	2.486	3410	5930	19.3

Heat deposition by High proton beam

Heat deposition of a 200 MeV Proton beam in Lead

(S. Buono, Y. Kadi, C. Rubbia)

	Energy (MeV)	Fraction of Proton Energy	Fraction of energy deposit as heat
Incident Energy	200	100	
Total energy deposited	183	91.5	100
Ionization losses	160	80	87.4
Charged evaporation products	1.9	0.95	1.0
Nuclei recoil (including fission products)	2.1	1.0	1.1
Slowed down charged particles	17.6	8.75	9.6
Neutral pion decay	-	-	-
Nuclei de-excitation	1.6	0.8	0.9

Heat deposition of a 1Gev Proton beam in Lead

(S. Buono, Y. Kadi, C. Rubbia)

	Energy (MeV)	Fraction of Proton Energy	Fraction of energy deposit as heat
Incident Energy	1000	100	
Total energy deposited	659	65.9	100
Ionization losses	450	45	68.3
Charged evaporation products	69	6.9	10.5
Nuclei recoil (including fission products)	41	4.1	6.2
Slowed down charged particles	38	3.8	5.8
Neutral pion decay	35	3.5	5.3
Nuclei de-excitation	26	2.6	3.9

Why Liquid Target?

-Very High Heat Deposition Density by proton beam ~ few kW/cm³

-Very High Radiation Damage ~100 DPA or more/year **Embrittlement Irradiation Creep** Void Swelling **Hydrogen Generation Helium Generation** Transmutation

Solution for both these issues – Use circulating liquid target

Suitable Liquid Targets

-		1	1	1		1	
	Element	Atomic Mass (A)	Atomic Number (Z)	A/Z	Melting Tempera ture (°C)	Boiling Tempera ture (ºC)	Density at room Temp (g/cc)
Possible	Pb	207	82	2.524	327	1725	11.36
Liquid Targets	Bi	209	83	2.518	271	1560	9.80
	LBE	~208	~82.5	~2.52	125	Similar to Pb/Bi	~10.0
suitable due to	Hg	200	79	2.532	-38.36	357	13.54
temp. for	U	238	92	2.590	1132.3	3818	19.07
reactors	Та	181	73	2.479	2996	5425	16.6
identified as best target	W	184	74	2.486	3410	5930	19.3
material							

Typical Heat deposition contours for different beam energies in lead target by FLUKA code-Ref: S. Buono, Y. Kadi, C. rubbia

The beam size was taken as a circular spot of $r_0 = 7.5$ cm radius. In the Montecarlo calculations the beam distribution has been approximated with the parabola:

$$\frac{2I_o}{\pi r_o^2} \left(1 - \frac{r^2}{r_o^2}\right).$$

Methods of circulation for Target Module

Methods of Circulation for Target Module

- Conventional Pump Driven loop
 - Mechanical Pump
 - Electromagnetic Pump (low efficiency: ~ 3%
 Due to low electrical conductivity ~10⁶ mho/m)
- Buoyancy Driven Loop
- Gas driven Loop

Window Type Target loops-Various Circulating Methods

Pressure head

1) Buoyancy Loop

 $\Delta P_{Buoy} = \beta \rho_{cold} \Delta T g h$

β =Volumetric Expansion
 coefficient (1/K)
 ~1.24x10⁻⁴ for LBE

2) Gas Driven Loop

$$\begin{split} \Delta P_{head} = ~ \alpha_{ave} ~ \rho_{cold} \, .g.h + Buoyancy \\ \alpha_{ave} \thicksim 0.25 \end{split}$$

Windowless Target Systems

What is Windowless target System?

- In this system window is eliminated and proton beam directly impinges on the Liquid metal free surface
- The free surface is exposed to vacuum environment (~10⁻⁶ torr) of the beam as required
- This is possible only if the Liquid Metal Vapour pressure is very small at the operating temperatures
- LBE and Pb are potential candidates

Saturated Vapour Pressure of LBE at Different temperatures

Ref: Hand book on LBE alloy and Lead properties, Material Compatibility, Thermalhydraulics and technologies, 2007, NEA,

Organisation for economic cooperation and development

LBE		
Temperature Vapour pressu		
K	Pa	
500	2.9 x10 ⁻¹⁰	
600	5.3 x 10 ⁻⁷	
700	1.1 x 10 ⁻⁴	
800	6.3 x 10 ⁻³	
900	1.5 x 10 ⁻¹	
1000	1.8	

One of the Windowless target configuration currently under study

Alternative Windowless target configuration currently under study

Window vs Windowless

Window vs. Windowless

Issues	Solid Window	Windowless
Radiation damage and Thermal stresses and Corrosion effects	Yes	No
Life of Target module	Decided by Window (~6 months to 1 year)	Decided by rest of the components
Beam scanning area (Bearing on the target diameter and Activation of Structures above the reactor)	Large (~50 µA/cm²)	Small (~120 µA/cm²)
Flow Stability	Stable	Unstable free surface
Buoyancy driven flow	Possible	Not Possible

Typical Target Configuration Under Study in Various Institutions

MYRRHA -50 MW th - SCK.CEN Windowless Target (Aït Abderrahim Hamid)

- -Beam : 350 MeV , 5 mA
- -Heat deposited : 80% of 1.75 MW
- -Beam Penetration 130 mm
- -1.40 MW to be from 500 cm³

MYRRHA -50 MW th - SCK.CEN Windowless Target -cont

Windowless target

- Space considerations : \u03c672 mm target
- 5 mA current
 - \Rightarrow Beam density : 125-175 μ A/cm²

Vertical coaxial confluent LBE flow

- Space consideration
- Free surface formation

Off axis LBE servicing

- Leave top & bottom of subcritical core free
 - ⇒ Accessibility experimental radiation device
- Main part of the spallation loop away from high radiation zone
 - ⇒ Lifetime

HYPER Reactor -1000 MW th Beam – 20 MW (1GeV and 20 mA)

Korean Atomic Research Institute - KAERI

FZK – 1500 MWth (Germany) 3 Beams (Power 4 MW each – 1GeV & 4mA

Pb coolant

Figure Target unit sketch

ADS-80 MWth-EURATOM 5th Frame Work

Proton energy 600 MeV Current 6mA **Beam power** 3.6 MW 2.6 MW **Heat Deposited** LBE Temp.: Inlet 335 °C ~440 °C outlet LBE Velocity: Flow Average 0.5 m/s Max. Surface ≤ 2.0 m/s Velocity

JAERI- 800 MWth (Japan) Beam Power 30 MW (1.5 Gev and 20 mA)

Engineering Feasibility: Spallation Target and Beam Window

30 MW proton beam with 1.5 GeV causes heat deposition of 15.7MW.
 ■Conditions and criteria for the beam window:

 ✓ Inlet temp. : 300 °C
 ✓ LBE flow: < 2m/s
 ✓ The second seco

- ✓ Temp. of outer surface: < 520°C
 ✓ Structural strength:
- Thermal stress, buckling, etc.

The feasibility of the beam window was verified under the nominal operation conditions, but the effect of corrosion, irradiation and fabrication accuracy should be discussed.

We should accumulate experience on LBE spallation target.

4th Asia ADS Workshop at KURRI

Indian One-way coupled Fast-Thermal Reactor -750 MW Thermal

- -100 MW Fast Core (Neutron Multiplier) Proton Beam -1GeV,2mA -Inner fast core -Pu /U233 – Th MOX fuel
 - -Target and coolant for Fast Core- LBE
 - -Outer thermal
 - (PHWR/AHWR) core -
 - Iow enrichment / insitu produced U233 in Th MOX -Separated by gap and thermal liner
 - -Keff of each core <~ 0.95 -Combined Keff <~ 0.98

Thermal Analysis of Target for One-way coupled Fast-Thermal Reactor (1GeV, 2mA Proton Beam) LBE (91 kg/s,Tin = 275 C) Window (T91, Tmax = 540 C Heat Deposition by FLUKA)

Thermal Analysis of Windowless Target for One-way coupled Fast-Thermal Reactor (1GeV, 2mA Proton Beam)

Contours of horizontal-velocity (m/s)

Contours of Temperature (K) T (maximum surface) ~ 718 K

Mass Flow Rate	120 kg/s	
Riser Width	0.5 m	
Downcomer Width	0.5 m	
Inlet Temp	493 K	
Flow Diverters	36 blocks 3mm thick 14.5 mm gap	
Free surface length	0.64 m	

Thermal-hydraulics and Related Technology Issues of LBE Target System

ADS TARGET DEVELOPMENT

INTER-LINKED TECHNOLOGY ISSUES

Radiation Damage Effects on Target Window

Expected DPA Per Annum: ~100

- Embrittlement
- Irradiation Creep
- Void Swelling
- Hydrogen Generation
- Helium Generation
- Transmutation

Helium measured in various alloys following irradiation in LANSCE with 500-800 MeV protons and spallation neutrons

MEGAPIE Target-T91 Window Proton beam:570 MeV & 1.4 mA (European Union)

Figure 1: Charpy impact properties of T91 steel in the asreceived condition and after irradiation to 4.6 and 6.8 dpa.

Candidate Materials for Target Window

T-91 / F91 (Steel) (Ni:0.13,Cr:8.26,Mn:0.38,Mo:0.95,Si:0.43,Ti:0.014, V:0.2,C:0.105,P:0.009,S:0.003,Nb:0.08,N:0.055, Al:0.024,Cu:0.08,As:0.02,Sn:0.008,Fe:balance)

HT-9 (Steel) (Ni:0.5,Cr:12.0,Mn:0.2,Mo:1.0,Si:0.25,W:0.5,V:0.5, C:0.2, Fe:balance)

EP-823 (Steel)-Russian Steel (Ni:0.8,Cr:12.0,Mn:0.6,Mo:1.0,Si:1.3,W:0.8,V:0.4, C:0.2, Fe:balance)

Oxygen for Corrosion Control in lead/LBE

CORROSION OF STEELS

IN FLOWING LEAD after 3000 h at 550°C

From: V. Markov, Prometey, St. Petersburg

End of Lecture -1

Thank You for Your Attention