

1858-37

School on Physics, Technology and Applications of Accelerator Driven Systems (ADS)

19 - 30 November 2007

Thermal Hydraulics of Heavy Liquid Metal Target for ADS. Part II

> Polepalle SATYAMURTHY BARC - ADS Target Development Section Beam Technology Development Group 400085 Mumbai India

Thermal-hydraulics of ADS target -Lecture-2

P. Satyamurthy ADS Target development Section, Bhabha Atomic Research Centre Mumbai-400085, India

Contents of Lecture -2:

Pumping methods:

 -1) Buoyancy
 2) Mechanical pumping
 3) Gas driven pumping

2) Pressure drop calculations

Contents of Lecture -2: cont.

3)CFD analysis of flow in the spallation and window region:

- Flow modeling
- **Governing equations**
- Boundary and inlet conditions
- Heat Deposition data from FLUKA
- **Numerical solution methods**
- Flow and Geometric Optimization of Target configuration
- Issues related to flow analysis under abnormal conditions

Window Type Target loops-Various Circulating Methods

Window Type Target loops-Various Circulating Methods

- Conventional Pump Driven loop
 - Mechanical Pump
 - Electromagnetic Pump (low efficiency: ~ 3%
 Due to low electrical conductivity ~10⁶ mho/m)
- Buoyancy Driven Loop
- Gas driven Loop

Pressure head

1) Buoyancy Loop

$$\Delta P_{Buoy} = \beta \rho_{cold} \Delta T g h$$

 β =Volumetric Expansion coefficient (1/K)~1.24x10⁻⁴ for LBE

2) Gas Driven Loop $\Delta P_{head} = \alpha_{ave} \rho_{cold} \cdot g \cdot h + Buoyancy head$ $\alpha_{ave} \sim 0.25$

 Φ_{lo}^2 =Two-phase multiplication factor

Two-phase flow-Pressure Drop Calculations-Some more details

$$\phi_{lo}^{2} = (1-X)^{2} + X^{2} \left(\frac{\rho_{l}}{\rho_{g}}\right) \left(\frac{f_{g}}{f_{l}}\right) + \left(\frac{3.24(X^{0.78})(1-X)^{0.24}\left(\frac{\rho_{l}}{\rho_{g}}\right)^{0.91}\left(\frac{\mu_{g}}{\mu_{l}}\right)^{0.19}\left(1-\frac{\mu_{g}}{\mu_{l}}\right)^{0.7}}{F_{r}^{0.045}w_{e}^{0.035}}\right)$$

$$\rho_t = \frac{\rho_l \rho_g}{X \rho_l + (1 - X) \rho_g} \quad G = \frac{\dot{m}_l + \dot{m}_g}{A} \quad X = \frac{\dot{m}_g}{\dot{m}_g + \dot{m}_l} \quad W_e = \frac{G^2 D}{\rho_t \Sigma_l}$$

$$F_r = \frac{G^2}{gD\rho_t^2}$$

 $Σ_1$ = surface tension of liquid metal, W_e = Weber number F_r = Froude number

CFD analysis of flow in the spallation and window region

Why do we require CFD (Computational Fluid Dynamics) analysis?

- The spallation heat is distributed in the target and window.
- The temperature field in the window and target should be accurately known to ensure there is no excess temperature (than the designed one) in the entire region
- To know the temperature field we require to know the velocity field accurately
- Detailed temperature in the window and other components are needed for thermo-mechanical stress calculations
- For Target geometry and flow optimization

Characteristic of the LBE Flow

- Flow is turbulent
- Strictly 3D flow but can be approximated 2D axi-symmetric flow
- Buoyancy effects have to be taken into account
- Low Prandtl number (due to high thermal conductivity)
- Volumetric heat deposition and surface heat transfer

Basic Fluid equations

Continuity equation

$$\frac{\partial \rho}{\partial t} + \nabla \bullet \left(\rho \vec{u}\right) = 0$$

Momentum equation

$$\frac{\partial \rho \vec{u}}{\partial t} + \nabla \bullet (\rho \vec{u} \vec{u}) = -\nabla P + \nabla \bullet \vec{\tau} + \rho \vec{g}$$
$$\vec{\tau} = \mu \left[\left(\nabla \vec{u} + \nabla \vec{u}^T \right) - \frac{2}{3} \nabla \bullet \vec{u} I \right]$$

Basic Fluid equations - cont

Energy Equation

$$\frac{\partial(\rho E)}{\partial t} = \nabla \bullet \left(\vec{u} \left(\rho E + p \right) \right) = -\nabla \bullet \vec{q} + s - \nabla \bullet \left(\vec{u} \bullet \vec{\tau} \right)$$

 \vec{q} = int energy + kinetic energy per unit mass \vec{q} = heat flux ; s = heat deposited per unit volume

Simplification of flow equations for CFD analysis

- Flow is incompressible except for variation in the density due to temperature (Boussinesq approximation)
- Flow is Turbulent

$$\vec{u} \Rightarrow \vec{u} \text{ (mean value)} + \vec{u}' \text{(fluctuating value)}$$

 $\vec{\tau} = \mu \left[\left(\nabla \vec{u} + \nabla \vec{u}^T \right) - \frac{2}{3} \nabla \bullet \vec{u} I \right] - \rho \overline{\vec{u}' \vec{u}'}$

• Similarly for other variables

Eddy Viscosity Concept

- Boussinesq (1877) proposed this concept
- Turbulent stresses are proportional to mean velocity gradients

•
$$-\rho \overline{\vec{u}'\vec{u}'} = \mu_t \left[\nabla \vec{u} + \nabla \vec{u}^T\right] - \frac{2}{3}kI$$

 $\mu_t \propto v_0 l_0$ where v_0 = velocity scale
 l_0 = length scale

K-ε Model

Flow Equations: Continuity & Momentum

 $\mathcal{U}_r \quad \mathcal{U}_z$ are the components of velocity ρ vector in the z and r directions, is the density of the liquid metal. pressure, μ_e is effective viscosity, g_z acceleration due to gravity. p ρ_{ref} reference density corresponding to inlet density of the liquid metal $\frac{1}{2}\frac{\partial(\rho r u_r)}{\partial r} + \frac{\partial(\rho u_z)}{\partial r} = 0$ $\frac{\partial \rho u_r}{\partial t} + \frac{1}{r} \frac{\partial (\rho r u_r u_r)}{\partial r} + \frac{\partial (\rho u_z u_r)}{\partial z} = -\frac{\partial p}{\partial r} + \frac{1}{r} \frac{\partial}{\partial r} \left(\mu_e r \frac{\partial u_r}{\partial r} \right) + \frac{\partial}{\partial z} \left(\mu_e \frac{\partial u_r}{\partial z} \right) - \mu_e \frac{u_r}{r^2}$ $\frac{\partial \rho u_z}{\partial t} + \frac{1}{r} \frac{\partial (\rho r u_r u_z)}{\partial r} + \frac{\partial (\rho u_z u_z)}{\partial z} = -\frac{\partial p}{\partial z} + \frac{1}{r} \frac{\partial}{\partial r} \left(\mu_e r \frac{\partial u_z}{\partial r} \right) + \frac{\partial}{\partial z} \left(\mu_e \frac{\partial u_z}{\partial z} \right) + (\rho_{ref} - \rho) g_z$

Flow Equations: Energy and Turbulent Energy

 C_{p} μ_m molecular viscosity is specific heat at constant pressure. k_m molecular thermal conductivity is time averaged temperature. $C_{\prime\prime\prime}$ the turbulent model constant volumetric heat generation q_T turbulent kinetic energy $\frac{\partial \rho C_p T}{\partial t} + \frac{1}{r} \frac{\partial \left(\rho C_p r u_r T\right)}{\partial r} + \frac{\partial \left(\rho C_p u_z T\right)}{\partial z} = \frac{1}{r} \frac{\partial}{\partial r} \left(r \Gamma_k \frac{\partial T}{\partial r}\right) + \frac{\partial}{\partial z} \left(\Gamma_k \frac{\partial T}{\partial z}\right) + q_T$ $\mu_t = C_{\mu} \rho \frac{k^2}{c} \qquad \Gamma_k = \left(k_m + \frac{\mu_t C_p}{c}\right)$ $\mu_e = \mu_m + \mu_t$ $\frac{\partial \rho k}{\partial t} + \frac{1}{r} \frac{\partial (\rho r u_r k)}{\partial r} + \frac{\partial (\rho u_z k)}{\partial z} = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\mu_t}{\sigma_r} \frac{\partial k}{\partial r} \right) + \frac{\partial}{\partial z} \left(\frac{\mu_t}{\sigma_r} \frac{\partial k}{\partial z} \right) + S_k + \frac{\beta \mu_t}{\sigma} \left(g_z \frac{\partial T}{\partial z} \right)$

Flow Equations: Turbulent kinetic energy dissipation

$$\begin{split} \sigma_{k} & \text{Prandtl no. for the turbulent kinetic energy.} \quad \beta \text{ coefficient of thermal expansion} \\ \frac{\partial \rho \varepsilon}{\partial t} + \frac{1}{r} \frac{\partial (\rho r u_{r} \varepsilon)}{\partial r} + \frac{\partial (\rho u_{z} \varepsilon)}{\partial z} = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\mu_{t}}{\sigma_{\varepsilon}} \frac{\partial \varepsilon}{\partial r} \right) + \frac{\partial}{\partial z} \left(\frac{\mu_{t}}{\sigma_{\varepsilon}} \frac{\partial \varepsilon}{\partial z} \right) + S_{\varepsilon} \\ & + \frac{C_{1\varepsilon} \varepsilon}{k} B \\ S_{\varepsilon} = \frac{\varepsilon}{k} (C_{1\varepsilon} G - C_{2\varepsilon} \rho \varepsilon) \qquad S_{k} = G - \rho \varepsilon \quad B = \frac{\beta \mu_{t}}{\sigma_{t}} \left(g_{z} \frac{\partial T}{\partial z} \right) \\ G = \mu_{t} \left\{ 2 \left[\left(\frac{\partial u_{r}}{\partial r} \right)^{2} + \left(\frac{\partial u_{z}}{\partial z} \right)^{2} + \left(\frac{u_{r}}{r} \right)^{2} \right] + \left(\frac{\partial u_{z}}{\partial r} + \frac{\partial u_{r}}{\partial z} \right)^{2} \right\} \end{split}$$

Inlet & Boundary conditions

- Heat data from Fluka code
- Inlet velocity
- Inlet temperature
- Out let pressure
- Inlet Turbulent kinetic energy
- Inlet turbulent dissipation
- Inner wall and outer wall thermal condition (Adiabatic wall)

CFD Analysis of a Typical Target

Target Parameters - 1

Proton Beam

- •Energy: 1GeV
- •Current: 10 mA
- •Profile: Parabolic
- •Heat Deposited in Window ~ 55 kW
- •Total Heat Deposited: ~ 6.5 MW

Target Parameters -2

• Window – **T**91

(Ni:0.13,Cr:8.26,Mn:0.38,Mo:0.95,Si:0.43Ti:0.014, V:0.2,C:0.105,P:0.009,S:0.003,Nb:0.08,N:0055, Al:0.024,Cu:0.08,As:0.02,Sn:0.008,Fe:balance)

- Other components T91/316L
- Target LBE
- Inlet temperature of LBE 500 K

Target Parameters - 3

- Design Considerations
 - Maximum Current Density< 50µA/cm²
 - Maximum LBE flow rate anywhere in flow field < 2.0 m/s
 - Maximum LBE flow rate in riser and down comer < 0.2 m/s
 - Maximum Window Temperature < 873 K</p>
 - Maximum Thermal Stresses < 400 MPa (Secondary Stresses)

GEOMETRY-1 FLOW-GUIDE DIAMETER = 170mm

Grid Details

Total Number of Elements: 89,427

TEMPERATURE CONTOURS FOR GEOM-1 FLOW RATE = 400 kg/s

VELOCITY CONTOURS FOR GEOM-1 FLOW RATE = 400 kg/s

TEMPERATURE CONTOURS FOR GEOM-2 (FLOW GUIDE DIA = 240 mm) FLOW RATE = 550 kg/s

VELOCITY CONTOURS FOR GEOM-2 FLOW RATE = 550 kg/s

Simulations in Final Optimized Geometry Using Different Turbulence Models

FLOW-GUIDE DIAMETER = 280mm FLOW RATE = 600 kg/s

STANDARD k-ε MODEL VELOCITY CONTOURS

STANDARD k-ε MODEL TEMPERATURE CONTOURS

STANDARD k-ε MODEL TURBULENT KINETIC ENERGY CONTOURS

k-ε RNG MODEL VELOCITY CONTOURS

k-ε RNG MODEL TEMPERATURE CONTOURS

k-ε RNG MODEL TURBULENT KINETIC ENERGY CONTOURS

Results Summary with Different Turbulence Models

Model	Maximum LBE Temperature (K)	Maximum LBE Velocity (m/s)
Std k-ε	769	1.38
k-ε RNG	853	1.475
Std k-ຜ	759	1.354
k-ω-SST	760	1.347

Thank you for Attention