

1858-34

School on Physics, Technology and Applications of Accelerator Driven Systems (ADS)

19 - 30 November 2007

Nuclear Reactions and Related Data Libraries at Low Energies. Part II

Alberto MENGONI ENEA,Bologna,Italy / IAEA Nuclear Data Section, Vienna Austria

Cosmological way

based on the Hubble time definition ("expansion age")

Astronomical way

based on observations of globular clusters

Nuclear way

based on abundances & decay properties of long-lived radioactive species

Age from Hubble time

The most recent estimate of the Hubble constant based on observations provides(*) : $H_0 = 72 \pm 8$ km/sec/Mpc and implies an age of:

 13.9 ± 1.5 Gyr

(*) HST Key Project see: WL Friedman *et al.*, ApJ **553**, (2001) 47

NB: if $\Omega = \Omega_m \sim 1$, then age=2/3×1/ H_0 = 9.3±**1.0 Gyr**

Cosmological "problems" with age

EXPANSION OF THE UNIVERSE

http://map.gsfc.nasa.gov/

Age from WMAP observations

The detailed structure of the cosmic microwave background fluctuations will depend on the current density of the universe, the composition of the universe and its expansion rate. WMAP has been able to determine these parameters with an accuracy of better than 5%. Thus, we can estimate the expansion age of the universe to better than 5%. When we combine the WMAP data with complimentary observations from other CMB experiments (ACBAR and CBI), we are able to determine an age for the universe closer to an accuracy of 1%.

 13.7 ± 0.2 Gyr

Source: CL Bennett et al., ApJS, 148 (2003) 1

Age from globular clusters

The age derived from observation of the luminosity-color relation of stars in globular clusters

from > 11.2 Gyr (*)

to $14\pm2.0~Gyr$

(*) LM Krauss and B Chaboyer, Science 299 (2003) 65

FIG. 2. HR diagram for M92. The squares are measured colors and brightnesses for individual stars in the cluster. The lines show model predictions for the positions of stars for cluster ages of 14, 16, and 18 billion years. The match of the models to the cluster data for an age of 16 billion years is remarkably good.

alberto.mengoni@cern.ch

The nuclear way

Traditional nuclear clocks are those based on:

- 235U/238U
- ²³²Th/²³⁸U
- ¹⁸⁷Os/¹⁸⁷Re

• Th/Eu, Th/X or Th/U abundances in low-Z stars

Re/Os clock BANG! ? 4.5 Gyr Now									V	
Os		Os 184 _{0.02}	Os 185 _{94 d}	Os 186 1.58	Os 187 ^{1.6}	Os 188 ^{13.3}	Os 189 16.1	Os 190 26.4	Os 191 _{15.4 d}	Os 192 41.0
Re		Re 183 71 d	Re 184 38 d	Re 185 37.4	Re 186 90.64 h	Pe 187 62 6 42.3x10 ⁹ a	Re 188 16.98 h	Re 189 24.3 h	Re 190 3.1 m	

W 185

75.1 d

W 186

28.6

W 187

23.8 h

W 188

69 d

The β -decay half-life of ¹⁸⁷Re is 42.3 Gy Effect on the abundance of the decay daugther ¹⁸⁷Os

W 184

30.67

W 182

26.3

W

W 183

14.3

Enhanchement of [¹⁸⁷Os] by ¹⁸⁷Re(β⁻)

The s-process condition $\sigma_A N_A = const.$ implies that:

 σ_{186} [¹⁸⁶Os] = σ_{187} [¹⁸⁷Os]

From (n,γ) systematics

σ₁₈₆ / σ₁₈₇ ~ 0,5

On the other hand, from solar-system abundances:

[¹⁸⁷Os] / [¹⁸⁶Os] = **0.7924** ± **0.0016**

alberto.mengoni@cern.ch

Os measurements setup

γ -ray detection: C₆D₆ scintillators

Pulse height weighting technique

Correction of the γ -response by weighting function to make the detector efficiency proportional to γ -ray energy

Neutron flux monitor

Silicon detectors viewing a thin ⁶LiF foil

Samples & capture yields

- ¹⁸⁶Os (2 g, 79 %)
- 187Os (2 g, 70 %)
- ¹⁸⁸Os (2 g, 95 %)
- Al can environmental background
- ¹⁹⁷Au (1.2g) flux normalization (using Ratynski and Macklin high accuracy cross section data)
- natPb (2 g)
 in-beam gamma background
- natC (0.5 g) neutron scattering background

www.cern.ch/n_TOF

The n_TOF Collaboration

n_TOF-04: Os capture x-section

www.cern.ch/n_TOF

The n_TOF Collaboration

Stellar ¹⁸⁷Os(n, y) rate

For example, in ¹⁸⁷Os at kT = 30 keV it is:

P(gs) = 33% P(1st) = 47% P(all others) = 20%

Stellar ¹⁸⁷Os(n, y) rate

Calculation of t	he stellar	correction	factor	$F_{\sigma} \equiv$	$f_{186}/$	f_{187}
------------------	------------	------------	--------	---------------------	------------	-----------

Thermal energy	$\langle \sigma(187) \rangle_{\rm Lab}$	$\langle \sigma(187) \rangle_{\rm calc}$	$\langle \sigma(187) \rangle_*$	f_{187}	F_{σ}
KeV	$^{\mathrm{mb}}$	$^{\mathrm{mb}}$	$^{\mathrm{mb}}$		
10	1988 ± 100	2111	2324	1.10	0.91
20	1171 ± 39	1193	1402	1.18	0.85
30	874 ± 28	876	1059	1.21	0.86
40	715 ± 22	712	877	1.23	0.89
50	614 ± 12	610	766	1.26	0.93
100		395	571	1.45	1.03

More on stellar rates

Let's assume the age from WMAP is correct

 13.7 ± 0.2 Gyr

Cosmo-Chronology from others								
sources	ht [.]	tp://www.geraldschroeder.com/age.html						
Day 1	: 8 Gyr							
Day 2	: 4 Gyr							
Day 3	: 2 Gyr							
Day 4	: 1 Gyr							
Day 5	: 1/2 Gyr							
Day 6	: 1/4 Gyr							
Total	: 15 ¾ = 15.8 Gyr							

Slides annex

Nuclear & Astro issues

In addition to the particular conditions which allows to use the Re/Os abundance pair as a clock there are a number of complications:

- The β -decay half-life of ¹⁸⁷Re is strongly dependent on temperature
- The stellar neutron capture cross section of ¹⁸⁷Os is influenced by the population of low-lying excited levels (the 1st excited states is at 9.8 keV)
- Branching(s) at ¹⁸⁵W and/or at ¹⁸⁶Re

The chemical evolution of the galaxy influences the history of the nucleosynthesis

Re and Os abundances

¹⁸⁷Re(β⁻) decay

The β -decay half-life of ¹⁸⁷Re is $\tau_{\beta} = 43.2 \pm 1.3$ Gyr. Under stellar conditions, the ¹⁸⁷Os and ¹⁸⁷Re atoms can be partly or fully ionized. The β -decay rate can then proceed through a

transition to bound-electronic states in ¹⁸⁷Os. The rate for this process can be orders of magnitude faster than the neutral-atom decay. The bound-state β -decay half-life of fully-ionized ¹⁸⁷Re has been measured @ GSI.

The half-life of fully-ionized ¹⁸⁷Re turns out to be: $\tau_{\beta} = 32.9 \pm 2.0$ yr. (F. Bosch, *et al.*, PRL **77** (1996) 5190)

Impact on the age: $\approx 1 \text{ Gyr}(?)$

The ¹⁸⁵W(n,γ)¹⁸⁶W rate is needed The inverse ¹⁸⁶W(γ,n)¹⁸⁵W cross section has been measured K. Sonnabend *et al.* ApJ **583** (2003), 506-513.

Impact on the age: negligible

Red shift

The red-shift z is defined as:

$$1 + z = \frac{\lambda_{obs}}{\lambda_{emitted}}$$

•z = 0.01 (v = 3,000 Km/s) •z = 0.05 (v = 15,000 Km/s) •z = 0.25 (v = 75,000 Km/s)

alberto.mengoni@cern.ch

Life of a	a star	LUMINOSITY	NUCLEAR FUEL "SWITCHED ON" 6 _N -T" (n = 1)	NUCLEAR FUEL (H) EXCHAUSTED (H) (H) (H) (H) (H) (H) (H) (H) (H) (H)	WAE
				CENTRAL TEMPERATURE	
		Temperature	Density		
Stage	Time scale	$T_9=10^9~{\rm K}$	${\rm g~cm^{-3}}$	Evolutionary stages of a 25 M_{\odot}	star
Hydrogen burning	$7 \times 10^{6} \mathrm{yr}$	0.06	5		
Helium burning	$5 \times 10^5 \mathrm{yr}$	0.23	7×10^2		
Carbon burning	600 yr	0.93	2×10^5		
Neon burning	1 yr	1.7	4×10^{6}		
Silicon burning	1 d	4.1	1×10^7		
Core collapse	seconds	8.1	3×10^9		
Core bounce	milliseconds	34.8	3×10^{14}		
Explosive burning	$0.1-10\mathrm{s}$	1.2 - 7.0	varies	alberto.mengoni@	cern.ch

Random topics ...

Spectral	Color	Mass	Luminosity	Surface	Lifetime	# of stars	Radius	Central	Central
Class				Temperature		in Milky way		Temperature	Density
		$[M_{\odot}]$	$[L_{\odot}]$	K	Мут		$[R_{\odot}]$	T_6	$\rm g/cm^3$
0	blue	32	600,000	40,000	1	20,000	18	37.3	3.3
B0		16	16,000	28,000	10		7.4	34.3	6.3
B5	blue	6	600	15,500	100	100,000,000	3.8	26.8	20.0
A0		3	60	9,900	500		2.5		
A5	white	2	20	8,500	1,000	1,200,000,000	1.7	20.9	67
F0		1.75	6	7,400	2,000		1.4	18.5	87
F5	white	1.25	3	6,500	4,000	3,700,000,000	1.2		
G0		1.06	1.3	6,000	10,000		1.1	13.5	90
G5	yellow	0.92	0.8	5,500	15,000	11,000,000,000	0.9		
K0		0.80	0.4	4,900	20,000		0.8	11.4	84
K5	orange	0.69	0.1	4,100	30,000	17,000,000,000	0.7		
M0		0.48	0.02	3,500	75,000		0.6		
M5	red	0.20	0.001	2,800	200,000	89,000,000,000	0.3		

Main sequence Stars

The canonical s-process

The time dependence of the abundances, N_A , is given by:

$$\frac{dN_{A}}{dt} = N_{n}(t)N_{A-1}(t)\left\langle\sigma_{n,\gamma}\mathbf{v}\right\rangle_{A-1} - N_{n}(t)N_{A}(t)\left\langle\sigma_{n,\gamma}\mathbf{v}\right\rangle_{A} - \lambda_{\beta}N_{A}(t)$$

We can define a time-integrated neutron flux (neutron exposure)

$$\tau = \int_0^t \phi_n(t') dt' = v_T \int_0^t N_n(t) dt$$

Then, assuming: *i*) $T \approx const.$ and *ii*) $\lambda_{\beta} \gg \lambda_{n,\gamma}$ or $\lambda_{\beta} \ll \lambda_{n,\gamma}$ it is $\frac{dN_A}{d\tau} = \left\langle \sigma_{n,\gamma} \right\rangle_{A-1} N_{A-1} - \left\langle \sigma_{n,\gamma} \right\rangle_A N_A$

It follows that along the s-process path:

$$\langle \sigma_{n,\gamma} \rangle_{A-1} N_{A-1} = \langle \sigma_{n,\gamma} \rangle_A N_A = const.$$

alberto.mengoni@cern.ch

The canonical s-process

The canonical s-process

No <σ>N correlation observed for nuclei **not** in the s-process path

Nuclear & Astro issues

In addition to the particular conditions which allows to use the Re/Os abundance pair as a clock there are a number of complications:

- The β -decay half-life of ¹⁸⁷Re is strongly dependent on temperature
- The stellar neutron capture cross section of ¹⁸⁷Os is influenced by the population of low-lying excited levels (the 1st excited states is at 9.8 keV)
- Branching(s) at ¹⁸⁵W and/or at ¹⁸⁶Re
- The chemical evolution of the galaxy influences the history of the nucleosynthesis
- Re and Os abundances own uncertainties

Issue 1: ¹⁸⁷Re(β⁻) decay

The β -decay half-life of ¹⁸⁷Re is $\tau_{\beta} = 43.2 \pm 1.3$ Gyr. Under stellar conditions, the ¹⁸⁷Os and ¹⁸⁷Re atoms can be partly or fully ionized.

The β -decay rate can then proceed through a transition to bound-electronic states in ¹⁸⁷Os. The rate for this process can be orders of magnitude faster than the neutral-atom decay. The bound-state β -decay half-life of fully-ionized ¹⁸⁷Re has been measured @ GSI.

The half-life of fully-ionized ¹⁸⁷Re turns out to be: $\tau_{\beta} = 32.9 \pm 2.0$ yr. (F. Bosch, *et al.*, PRL **77** (1996) 5190)

Impact on the age: ≈ 1 Gyr

Stellar ¹⁸⁷Os(n, y) rate

For example, in ¹⁸⁷Os at kT = 30 keV it is:

P(gs) = 33% P(1st) = 47% P(all others) = 20%

Thermal population

$$P(E_k) = \frac{(2J_k + 1)e^{-E_k/kT}}{\sum_m (2J_m + 1)e^{-E_m/kT}}$$

For example, in ¹⁸⁷Os at kT = 30 keV it is:

P(gs) = 33% P(1st) = 47% P(all others) = 20%

alberto.mengoni@cern.ch

The ¹⁸⁶Os(n,γ) cross section: theory

Hauser-Feschbach theory:

(statistical model)

$$\sigma_{n,\gamma}(E_n) = \frac{\pi}{k_n^2} \sum_{J\pi} g_J \frac{\sum_{ls} T_{n,ls} T_{\gamma,J}}{\sum_{ls} T_{n,ls} + \sum_{ls} T_{n',ls} + T_{\gamma,J}} W_{\gamma,\gamma}$$

• Neutron transmission coefficients, T_n : from OMP calculations

• γ -ray transmission coefficients, T_{γ} : from GDR (experimental parameters)

• Nuclear level densities: fixed at the neutron binding from $\langle D \rangle_{exp}$

All these parameters can be derived and fixed from the analysis of the experimental data at low-energy in the resolved resonance region

More on stellar rates

(n,n')

A neutron (inelastic) scattering experiment performed at FZK-Karlsruhe

Drawbacks of **⁷Li(p,n)⁷Be at** threshold:

- 1. small yield
- neutron energy distribution unstable due to the standard tiny fluctuations on the accelerator settings

Solutions:

- 1. improved neutron detection
- efficiency by use of KG2 (NE912)
- 1. improved background

subtraction by pulse shape analysis

2. new beam line with an improved setting of the analyzer magnet and computer monitoring of the neutron energy distribution

Santa Tecla, 2-9 October 2005

Marita Mosconi,FZK

(n,n') + theory needed

alberto.mengoni@cern.ch