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Statement of the problem

» prepare a system at time r = 0 in the ground state |vy) of a
(regularised) QFT with hamiltonian Hy

» for time ¢ > 0 evolve unitarily with a different hamiltonian H,
where [H, Hy] # 0, e.g. by suddenly changing a parameter
— a quantum quench, relevant to experiments on cold
atoms in optical lattices

» how do the correlation functions of local operators evolve?

» for fixed separations, do they become stationary as r — co?

» do the reduced density matrices of large but finite regions
become stationary? If so what is their form?
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» these questions involve understanding properties of QF T
in a pure state which is not an eigenstate



Simple harmonic oscillator

HO:%pz—i—%w%qz H:%p2+%w2q2
Heisenberg equation of motion has solution

q(t) = q(0) coswt + (p(0) /w) sin wt

Using (¢(0)%) = 1/2wo, (p(0)*) = wo/2,
{(q(0)p(0) + p(0)g(0)) = 0, and [¢(0), p(0)] = i we get the
propagator
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Deep quench limit, wy > w
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and similarly for higher correlations
» ¢(t) behaves classically, with a random initial velocity



Imaginary time
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» (q(7)?) = 0when 7 = £L/2, where w/wy = tanh(L/2)

» path integral in imaginary time is the same as if the theory
were confined to a slab —3L < 7 < 1L with Dirichlet
boundary conditions



Method of Images

» dependence on 11 — 1, « (positive) images at 7 = m + 2nL

» dependence on 7| + 7, < (negative) images at
1 = —T» + 2nL



Method of Images

» dependence on 11 — 1, « (positive) images at 7 = m + 2nL
» dependence on 7| + 7, < (negative) images at

71 = —Tr + 2nL
» if we ignore (or average over) the oscillating term, the

propagator is the same as that at finite temperature
ﬁeff =2L



Free scalar field theory

» a collection of oscillators H = [(%|m|* + Lwi|é|*)ak,

Wk = (mz + k2)1/2
» consider a quench my — m, with mg > m
» the oscillating part in (T (¢(1,x1)$(t2, x2))) has the form

d'k 1
/ (Zﬂ-)delk(xl—xz) < — w02k> coS (wk(tl + t2))

Wok Wy

> if wp = (k% + m?)'/? with m > 0 the second term

~ tl_d/z cos(2mt1) —0ast ~t — o



» the remainder corresponds to an effective k-dependent
temperature

Bk = (4/wk) tanh~! (wk/ka)

» if [x; —x2| < t the dominant contribution comes from k ~ 0,
and we can ignore the k-dependence in [

» the 2-point function (and the N-point functions) all
thermalize (but slowly)



Onset of correlations

» for large my

ik(x1—x2)
(p(t1,x1)9(t2,x2)) ~ mo /ddkewz (coswi(ti — 1) — coswi(t1 + 12))
k
a . .
87[1(”"8) X Gp()q —X2,11 — tz) — GF()C] — X2, —1 + lz)

—Gp(x1 —x2,1 + o) + Gp(x1 —x2,—11 — 1)

» if 11 + 1o < |x; — x2| this vanishes by Lorentz invariance —
horizon effect

» in general behaviour near horizon is smoothed out over
scales ot ~ my!



Massless case (conformal field theory)

» for m = 0 in 1+1 dimensions we find instead

0 ift1+l2<|x1—X2|
t t = .
<¢( 17X1)¢( 2,x2)> { mo(t1 + 1 — |X1 —XZD if H+n> ]xl —XZ’

» many gapless interacting systems in d = 1 are equivalent
to conformal field theories

» local observables
O, (x,1) ~ £i49(x:1)

where ¢(x, t) is a massless free field
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<(I)q(X, t)> = g_(qz/2)<¢(x,l)2) N e_moqzt



2-point functions:

(By(x1, 1) By (x2, 1)) = e~ @/DH@11)=0(x2,2))°)
so, for 11 + t» < |x1 — x2|/c,

(D (x1,11)P—g(x2,12)) ~ (Py(x1,11)) (P—g(x2,12))
while for 1, + 1, > |x; — x2|/c

(P (x1,11)P—g(x2,12)) ~ e e (“Hr(tlﬂzf‘x' 7x2|/c)) = ot lu—xl/c

» thermalization of a region of length ¢ takes place
exponentially fast (on a time-scale O(m, ')) after the
end-points come into mutual causal contact

» these results hold for any CFT in 1+1 dimensions



Physical picture
> |1Yp) has (extensively) higher energy than the ground state
of H
» it acts as a source of (quasi)particles att = 0
» particles emitted from regions size ~ mgl are entangled
» subsequently they move classically (at velocity +c)

» incoherent particles arriving at r from well-separated initial
points cause relaxation of local observables (except
conserved quantities like the energy) to their ground state
values:

RN




» horizon effect: local observables with separation r become
correlated when left- and right-moving particles originating
from the same spatial region ~ mgl can first reach them:

» if all particles move at unique speed c correlations are then
frozen fort > r/2¢
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» entanglement entropy of an interval of length 7 is
extensive, and identical to Gibbs-Boltzmann entropy at
temperature 3/



General dispersion relation

4%k eik(xl —x2) )
(0/01)(d(x1,1)P(x2, 1)) = mo/wk sin(2wyt)
» large x, ¢t behaviour given by stationary phase
approximation

|x1 — x2| /2t = dwy/dk = group velocity vg

» correlations begin to form at = |x; — x2|/2vVimax

» large t behaviour dominated by slowest moving particles:
eg lattice dispersion relation gives a power law approach to
asymptotic limit

Q Q
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» agrees with exact results for Ising and XY spin chains
[Barouch and McCovy, 1970-71]



General interacting QFTs

» can we safely ignore the oscillating terms in the propagator
within loops?

» \¢* theory in the Hartree (large N) approximation

. O

» even if the renormalized mass is zero, the interactions +
the modified propagator generate an effective mass, which
means that oscillating terms in the loop are damped —
thermalisation

» additional renormalisation required ind =3 ast — 0, in
analogy with boundary QFT




Summary and further remarks

» quantum quenches from mq | m appear to lead to
thermalisation of finite regions if m > 0, and even when
m = 0 in the presence of interactions

» there is a ‘horizon’ effect: correlations only begin to change
after points come into mutual causal contact

» many interesting questions remain: eg quenches from a
disordered phase — ordered phase — can we drive a
phase transition by changing the initial state? ...



