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Challenges in strongly correlated systems
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A case study: High TC cuprates



Parent compounds – ½ filling

Electron localized because of large 

local repulsion
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Antiferromagnetic Mott insulator

Spin degeneracy removed by 2nd

order perturbation theory



Chemical hole doping

Fate of the doped Mott antiferromagnet ?

- Highly correlated spin and hole dynamics

- No small parameter



Phase diagram

(x)

Ordered states

Quantum disorder?

Hidden Order?

Central paradigms of solid state physics fail: 

Fermi liquid, Landau theory, BCS



Challenges in strongly correlated systems

• Essentially impossible to predict 

phase diagram from the microscopics!

• Many competing orders 

- Are there hidden order parameters?

- New emergent collective modes?

• Characterizing quantum disordered states 

- “Order” without broken symmetry?  

- Topological order?



How can ultracold atoms help?

• Serve as “Quantum simulators”.

e.g. realization of the repulsive Hubbard model

• Explore strongly correlated systems in new regimes

Non equilibrium quantum dynamics

Dipolar interactions

• New measurement techniques are needed!

Quantum noise interferometry

Interference of independent condensates

See Hofstetter et. al. PRL (2002)



Broken symmetry: Landau theory

Effective classical dynamics 

of local order parameters



Landau Theory Example 1

Enormous success in describing ultra cold dilute atomic gasses !

Classical field equation for the condensate wave function

Broken U(1) symmetry

Gross-Pitaevskii description of bose superfluids



Detection of superfluid order: time of flight imaging



Detection of superfluid order: time of flight imaging

JILA 95



Fermi systems

Fermions cannot condense but allow other types of order:
Density wave (DW),  Spin-density wave/Antiferromagnet (SDW), 

Superconductivity (SC)

We shall see that all of these admit a unified description in 

terms of a condensate of fermion pairs.

Lattice fermions: 

M. Kohl et. Al. (ETH), PRL 2005



Antiferromagnetic order

Broken Su(2) symmetry

Is a spin-1 bosonic excitation of the Fermi sea

Condensation of a spin-1 boson

SDW order parameter ( q ~ 2kf ):



Unified mean field description of ordered states

Is there a unified detection scheme?

particle-hole condensates

particle-particle condensate



Standard probe of order in solids:

ISIS (2001)

Elastic neutron scattering:

k
k+q

Magnetic Bragg peaks

Neutrons (like any external probe) couple only to local 

densities (spin or charge). Cannot detect pairing correlations!

Can we develop a more general scheme for ultracold atoms?

Measures:



Quantum noise interferometry

Altman , Demler and Lukin,  PRA 2004 

Correlations:

Quantum

measurement noise

number correlations in momentum space



Noise correlations in ordered states

Superconductivity (p-p):

(correlation Peaks)

Spin/charge density wave (p-h):

(anticorrelation Peaks)

Note: -functions accquires width ~1/L for finite clouds of spatial size L



Noise correlations in a fermion band insulator 

(lattice induced CDW)

Mainz experiment: T. Rom et al. Nature (2006)



Mott insulator.bosonNoise correlations in a 

(Lattice induced CDW)

Mainz experiment: Foelling et al.,  Nature (2005)
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Beyond mean field: Itinerant fermions in 1d

L. Mathey, EA, A. Vishwanath cond-mat/0507108
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Beyond mean field: localized spin-½ particles on a lattice

Example: 1d Heisenberg chain

Spin correlations

Noise correlations

For localized particles we can show quite generally:

Altman , Demler and Lukin,  PRA 2004



Quantum disordered states



Example: Heisenberg spin chains

Spin ½ -- Exactly solvable by Bethe Ansatz

Gapless excitations, Power-law correlations

Large S -- Mapping to O(3) NL M (Haldane 83)

Q = Skyrmion number. 

Integer number depending on the 

topology of the field configuration

Topological Berry phase term
Q=1

Long believed to apply for all spins S until Haldane (83) pointed to a 

fascinating difference between integer and half-integer spin chains



Example: Heisenberg spin chains

Integer spin:

Only real weights “Classical” NL M

Spin liquid ground state

Gapped (spin-1) excitations:

More careful analysis reveals subtle non local order:

Den Nijs & Rommelse (89)



Superfluid to Mott-insulator transition of bosons

U>>tnU<<tn

U/tn

Theory: Fisher et al. PRB (89); Exp: Greiner et al. Nature (01)

Superfluid Mott-insulator



Both phases admit a simple classical (local) description!

Can we get something more interesting 

from plain vanilla bosons (spinless)?

Let’s see …



Polar molecules or atoms in a 1d optical lattice
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Plane vanilla (spinless)bosons – but with long range interaction

We will focus on integer filling (say one atom per site)

Atoms with large magnetic dipole 

moment (Cr @ Stuttgart):

Stuhler et. al. PRL 95, 150406 (2005).

Polar Molecules (underway)

Doyle (Harvard), Demille (Yale),

Grim (Innsbruck) ….



Conventional phases
(integer filling)
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Numerical investigation with  DMRG

MI DW

SF

U/t

V/t

Energy gap
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Excitation gap

How is it characterized?

New insulating phase between 

the two quantum phase transitions!



Numerical investigation with  DMRG
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Local density:

Indistinguishable from Mott by local density. Is there hidden order?



Yes! Highly non local string correlations

MI DW

SF

U/t

V/t

Density:

String:

rangerangerange



New insulating phase of bosons characterized 

by a highly non local order parameter !

Phase diagram



Caricature ground state by analogy to spin-1

Truncate  Hilbert space to 3 occupation states: nnS i

z

i

Mott insulator:

String:

• Huge quantum superposition of configurations

• Alternate ordering of particles and holes

Density wave:



How to detect the hidden order ?

Challenge:

Experimental probes couple to local observables

which cannot distinguish the Mott from the string-

ordered ground state.

Solution:

We will show that the elementary excitations of 

those two phases are dramatically different



Measuring excitation spectra

1. Periodic modulation of the lattice intensity:

Used to probe excitations in SF and MI

Absorption spectrum in linear response:

Stoferle et. al., PRL  04  (ETH)



Measuring excitation spectra

2. Bragg spectroscopy



Excitations of the Mott insulator

Particle:



Excitations of the Mott insulator

Hole:



Excitations of the Mott insulator

Lattice modulations or Bragg spectroscopy

only excite particle-hole pairs 

Observe only particle-hole 

continuum (No single mode peak)

Iucci et. al PRA 73, 041608 (06), Kollath et. al. PRL 97, 050402 (06)

Huber et. al. PRB  75, 085106 (07) 



Excitations of the Haldane insulator -Theory

Kennedy & Tasaki, PRL (91) Kennedy & Tasaki, PRL (91) 

OshikawaOshikawa, Phys.Scr.T (92), Phys.Scr.T (92)

To enable a local description apply a non-local unitary transformation:

String order Ferromagnetic order

Transformed Hamiltonian:

explicit Z2 X Z2 symmetry!



Single kink excitations

See alsoSee also Arovas,Auerbach,HaldaneArovas,Auerbach,Haldane (88)(88) FathFath and Solyom (93)and Solyom (93)

Variational ground state (one of 4):

Neutral excitation

Excitations:



“Two particle” excitations

That don’t change total particle number

Two branches classified by a topological number ( Nkinks ):

Insert Particle-hole:

Breaks up into pairs of kinks from the two different branches !



“Two particle” excitations

That don’t change total particle number

Bound state 

forms

Couples to lattice 

modulation

Couples to Bragg



New resonance in the absorption spectrum

Explicitly compute energies and matrix 

elements in the variational excitations 

Neutral mode (phonon) 

Particle-hole

continuum

(q=0 and )

Condenses at trans to DW

MF phase diagram
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Extensions

- Phase diagram by field theoretic analysis (Bosonization)

- Analysis of coupled chains (Bosonization, DMRG)

Realistic experiments:

- Full control of tunneling between chains

(via transverse lattice potential)

- Limited control over interchain dipolar interaction

(via angle of polarizing field) 



Conclusions

• Systems of ultracold atoms are geared to address open 
questions of strongly correlated quantum systems

• Quantum noise interferometery:
More to time of flight imaging than      .
Probes many-body correlations.

Altman, Demler, Lukin, PRA 70, 013603 (2004) 

• New insulating phase of bosons with dipolar interaction. 
Hidden order.
New collective mode.

Dalla Torre, Berg, and Altman 
PRL 97, 260401 (2006) 



Appendices
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Quantum interference between two possible two-particle paths

1 2

Noise correlations as a manifestation of the 

Hanbury-Brown Twiss effect

Two sources:



Bosons at lattice-momentum q expand as plane waves 

with wave-vectors k = q , q + Q , q + 2Q , q + 3Q , …

Lattice:

1 2
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If k1-k2 = nQ then the two particles originate 

from the same lattice-momentum q :

Enhanced correlation (bunching - bosons)

antibunching – fermions

k-k’

QG(k,k’)



Haldane gap in the anisotropic spin-1 chain

Heisenberg point
2

• String order in the Haldane gapped phase of spin-1 chains

• Breaking of hidden Z2 X Z2 symmetry Den Nijs & Rommelse (89)

V/2J

U/J
Disordered phase 

(MI)

Ising AF

(DW)

Haldane Gapped phase

Haldane (83)

(excluding terms that break particle-hole symmetry)

Numerical phase diagram

Chen et. al. PRB (2003)




