

1859-31

Summer School on Novel Quantum Phases and Non-Equilibrium Phenomena in Cold Atomic Gases

27 August - 7 September, 2007

Laser speckle: a wonderful tool for quantum gases in disordered potential (Part I & II)

Alan Aspect University of Paris XI - Sud

ICTP Summer School on Novel Quantum Phases and Non-equilibrium Phenomena in Cold Atomic Gases, Trieste, August 28, 2007

From classical to quantum localization: laser speckle wonderful

P. Lugan, David Clément, Laurent Sanchez-Palencia, A. Varon, J. Retter, P. Bouyer, AA

Groupe d'Optique Atomique Laboratoire Charles Fabry de l'Institut d'Optique - Palaiseau http://atomoptic.institutoptique.fr

Collaboration: D. Gangardt, G. Shlyapnikov, Orsay

QUDEDIS ESF/PESC Programme

From classical to Anderson localization: laser speckle wonderful

1. Localization with cold atoms in laser speckle: why, how?

A well controlled system

2. Suppression of the expansion of a 1D BEC released in a speckle

Classical localization

3. Towards Anderson localization?

An appealing scenario

Localization: a naive view (1)

Localization of particles in a disordered potential: a scenario to model insulators (electrons localization due to impurities)

Classical localization

energy smaller than the two highest potential barriers: confined classical motion

- $E \leq \sim 3\overline{V}$ localization
- $E \ge 4\overline{V}$: no barrier higher than *E*; unbounded motion

Can we have localization for E >>> V? Anderson localization

Localization: a naive view (2)

Localization of particles in a disordered potential: a scenario to model insulators with impurities

Quantum (Anderson like) localization 1D

Any de Broglie wave with momentum p is Bragg reflected on Fourier component $k = p / \hbar$: exponential envelope.

Z

The experimental quest of Anderson localization

Electromagnetic waves: problem of absorption

Microwaves (cm) on dielectric spheres: discrimination between absorption and localization by study of statistical fluctuations of transmission Chabonov et al., Nature 404, 850 (2000)

Light on dielectric microparticles (TiO₂):

- Exponential transmission observed, but possible role of absorption Wiersma et al., Nature 390, 671 (1997)
- Discrimination between absorption and localization (time resolved transmission) close to the localization threshold: Störzer et al., Phys Rev Lett 96, 063904 (2006)

Difficult to obtain $\ell < \lambda / 2 \pi$ (ℓ = mean free path)

Ioffe-Regel criterion: mobility edge $k < 1 / \ell$

No direct observation of the exponential profile of the localized function

Most of these limitations do not apply to the 2D localization of light observed in disordered two-dimensional photonic lattices: T. Schwartz et al. (M. Segev), Nature 446, 52 (2007). Ultra cold atoms (matter waves) Good candidate to observe AL

Good features

- Controllable dimensionality, geometry (size >> λ_{dB})
- Wavelength λ_{dB} "easily" controllable over many orders of magnitude (1 nm to 10 μ m)
- Pure potentials (no absorption), with "easily" controllable amplitude and statistical properties
- Many observation tools: light scattering or absorption, Bragg spectroscopy, ...

A new feature: interactions between atoms

- A hindrance to observe AL (pure wave effect)
- New interesting problems

Disordered potentials for cold atoms

Magnetic potential on an atom chip

• Sub micron structures (near field), designed at will (e-beam lithography), hard to modify in real time; extra randomness a problem, in spite of progress in understanding and controlling it (J. Estève et al. PRA 2004, JB Trebbia et al. PRL 2007)

RF dressed potentials (Villetaneuse)

• Small enough structures still to be demonstrated

• Not easy to pin the impurities

Optical dipole potential (R. Roth and K. Burnett, B. Damski et al., PRL 2003)

• laser beam transmitted through a random mask (Hanover): hard to make small structures (optical resolution)

• Optical dipole potential: created by a laser speckle = our favorite

Optical speckle random potential Blue detuned light creates a repulsive potential $V \propto \frac{I}{\delta}$

Laser speckle: very well controlled random intensity pattern (Gaussian random process, central limit theorem)

Spatial distribution controlled by aperture. Autocorrelation function rms width (speckle grain size)

$$\sigma_{\rm R} \simeq \frac{\lambda L}{\pi D}$$
 Calibrated for $\sigma_{\rm R} > 1 \mu {\rm m}$

Exponential intensity distribution $P(I) = \frac{1}{\overline{I}} \exp\{-\frac{I}{\overline{I}}\}$

Calibrated by RF spectroscopy (light shifts distribution)

D. Clément et al., New J. Phys. 8, 165 (2006)

From classical to Anderson localization: laser speckle wonderful

1. Localization with cold atoms in laser speckle: why, how?

A well controlled system

2. Suppression of the expansion of a 1D BEC released in a speckle

Classical localization

Towards Anderson localization?
 An appealing scenario

A 1D random potential for an elongated BEC

Cylindrical lens = anisotropic speckle, elongated along x and y

BEC elongated along $z : 2R_z^{TF} \approx 300 \,\mu\text{m}$; $2R_\perp^{TF} \approx 3 \,\mu\text{m}$ Released along z, confinement kept transversely during expansion 1 D situation for the expanding BEC. Many speckle grains covered (self averaging system = ergodic)

Potential amplitude \overline{V} tunable between 0 and 4 kHz (direct calibration) : smaller than trapped BEC chemical potential $\mu_{TF} = 5$ kHz

1D expansion of an elongated BEC

• Elongated BEC trapped $2R_z^{\text{TF}} \approx 300 \,\mu\text{m}$; $2R_{\perp}^{\text{TF}} \approx 3 \,\mu\text{m}$ $\omega_z / 2\pi = 6 \,\text{Hz}$; $\omega_{\perp} / 2\pi = 600 \,\text{Hz}$

- Axial trapping released $\omega_z/2\pi \sim 1 \text{Hz}$
- BEC expands along z, still transversely confined
- At time *τ* : switch off transverse trapping, free fall
- Absorption image allows to measure length at τ

1D BEC expansion in a random potential

- Elongated BEC trapped
- Apply random potential
- Hold for 200 ms

- Axial trapping released $\omega_z/2\pi \sim 1 \text{Hz}$
- BEC expands along z, still transversely confined
- At time *τ* : switch off transverse trapping, free fall
- Absorption image allows to measure length at τ

Expansion stopping in the random potential

- ♦ Free axial expansion $\sigma_V = 0$
- With random potential $\sigma_V = 0.3 \mu_{TF}$
- ▲ With random potential $\sigma_V = 0.6 \mu_{TF}$

D. Clément, A. Varòn., M. Hugbart, J. Retter et al., Phys. Rev. Lett., 95,170409 (2005)

See also C. Fort et al., PRL, 95, 170410(2005) in Florence and T. Schulte et al., PRL, 95, 170411(2005) in Hannover

How to understand the expansion stopping?

Anderson localization?

What are the relevant parameters?

Energies

- Chemical potential μ_{in}
- Random potential V_{dis}
- Kinetic energy $E_{\rm k}$

Initially
$$\mu_{\rm in} > V_{\rm dis} \gg E_{\rm kin}$$

Disordered potential correlation length $\sigma_{\rm R}$ compared to healing length

Initially
$$\xi_{in} < \sigma_{R} \iff \mu_{in} > \frac{\hbar^2}{2M\sigma_{R}^2}$$

Numerical study

Numerical resolution of the GPE (with optical speckle potential)

Reproduces quite well the experimental behavior

Plot of the density profile vs time suggests a scenario

Scenario for the stopping of the core expansion

Kinetic energy negligible: Thomas Fermi regime with $\mu_{in} > V_{dis}$:

 \Rightarrow density n(z) locally follows the disordered potential, with a parabolic envelope (initial Thomas Fermi profile) \Rightarrow expansion : n(z) decreases until local chemical potential becomes equal to a local maximum of $V_{dis}(z)$ $\Rightarrow n(z) = 0$ at peaks of $V_{dis}(z)$: fragmentation and expansion stopping Competition between the interaction energy and the disordered potential Averaged density reminiscent of the scaling solution of the expansion

Density of the core after blocking

Simple estimate of n_0 based on the fragmentation scenario and on the speckle statistics:

probability to have two close peaks with heights $V_{\text{peak}} > g_{1\text{D}} n_0$

$$\implies n_0 \simeq 1.25 \left(\frac{V_R}{g_{1D}}\right) \ln\left(\frac{0.47L_{TF}}{\Delta z}\right)$$

Reasonable agreement with results from numerics

Scenario for the expansion stopping in the wings

Observation (numerical calculations): average density constant, but detailed profile never stops evolving.

Regime of negligible interaction energy (*n* small) and large kinetic energy (a fraction of μ_{in})

Competition between kinetic energy and the disordered potential: many reflections back and forth.

Anderson localization?

Scenario for the expansion stopping in the wings

Observation (numerical calculations): average density constant, but detailed profile never stops evolving.

Regime of negligible interaction energy (*n* small) and large kinetic energy (a fraction of μ_{in})

Competition between kinetic energy and the disordered potential: many reflections back and forth.

Anderson localization?

No! Classical reflections on peaks higher than kinetic energy \otimes

What prevented us from observing AL?

And erson localization demands many (quantum) reflections with $R \ll 1$

In the core

Kinetic energy negligible. Competition between interaction energy and disordered potential, leading to fragmentation. Kinetic energy too small to have quantum reflections on peaks.

In the wings

Competition between kinetic energy and disordered potential: classical reflection on large peaks, not quantum reflection.

From classical to Anderson localization: laser speckle wonderful

1. Localization with cold atoms in laser speckle: why, how?

A well controlled system

2. Suppression of the expansion of a 1D BEC released in a speckle

Classical localization

3. Towards Anderson localization?An appealing scenario

Weak disorder: a regime for AL?

And erson localization demands many (quantum) reflections with $R \ll 1$

A good candidate: expanding BEC in a weak disorder $V_{dis} \ll \mu_{in}$

Almost free expansion. In the wings:

- Density small enough that interaction energy is negligible
- Initial energy transformed into kinetic energy large compared to V_{dis} : almost free de Broglie waves with $k_{\text{max}} \sim 1 / \xi_{\text{in}}$

If disordered potential has a broad enough spectrum of spatial frequencies, hope for AL

 \Rightarrow speckle grain size $\sigma_{\rm R}$ must be small compared to 1 / $k_{\rm max} \sim \xi_{\rm in}$

In previous experiments: $\sigma_R > \xi_{in}$ \otimes

Localization length for a given k

Perturbative solution of the Schrödinger equation, in the presence of a weak disorder

Localization of wave k if $\hat{c}(2k\sigma_{\rm R}) \neq 0$

i.e. if the disorder contains a component able to Bragg reflect the plane wave k.

Localization length for a given k

Perturbative solution of the Schrödinger equation, in the presence of a weak disorder

Localization if $\hat{c}(2k\sigma_{\rm R}) \neq 0$

Corrections based on a diagrammatic approach (Gogolin):

$$\langle |\phi_k(z)|^2 \rangle = \frac{\pi^2 \gamma(k)}{2} \int_0^\infty \mathrm{d}u \, u \, \sinh(\pi u) \left(\frac{1+u^2}{1+\cosh(\pi u)}\right)^2 e^{-2(1+u^2)\gamma(k)|z|}$$

Localization length for a given k

Perturbative solution of the Schrödinger equation, in the presence of a weak disorder

Localization if $\hat{c}(2k\sigma_{\rm R}) \neq 0$

Corrections based on a diagrammatic approach (Gogolin):

$$\langle |\phi_k(z)|^2 \rangle = \left(\frac{\pi^{7/2}}{64\sqrt{2\gamma(k)}} \right) \frac{e^{-2\gamma(k)|z|}}{|z|^{3/2}}$$
 Same localization length Conclusion unchanged

Case of a speckle potential: existence of an effective mobility edge

Case of a speckle potential

 $\frac{\ln 1D}{C(\Delta z)} = V_R^2 sinc^2(\Delta z/\sigma_R)$ $\hat{c}(\kappa) = \sqrt{\pi/2}(1 - \kappa/2)\Theta(1 - \kappa/2)$

$$\hat{c}(2k\sigma_{\rm R}) = 0$$

$$\gamma(k) = \frac{1}{L_{\rm loc}(k)} = 0$$
 for $k > 1/\sigma_{\rm R}$

Effective mobility edge

Only waves with $k < 1/\sigma_{\rm R}$ localize

Expansion of a BEC in a weak speckle potential: below the "mobility edge"

Assume an initial free expansion of the BEC, and take its k spectrum in the asymptotic regime (interaction energy negligible)

all k components localize. Addition of densities: density profile.

$$n_0(z) \propto rac{\exp\{-2\gamma(1/\xi_{in}) |z|\}}{|z|^{7/2}}, \ |z| o \infty$$

Expansion of a BEC in a weak speckle potential: below the "mobility edge"

Assume an initial free expansion of the BEC, and take its k spectrum in the asymptotic regime (interaction energy negligible)

all k components localize. Addition of densities: density profile.

$$n_0(z) \propto rac{\exp\{-2\gamma(1/\xi_{in}) |z|\}}{|z|^{7/2}}, \ |z| \to \infty$$

Looks like AL!

Expansion of a BEC in a weak speckle potential: above the "mobility edge"

Assume an initial free expansion of the BEC, and take its *k* spectrum in the asymptotic regime (interaction energy negligible)

k components with $k > 1/\sigma_{\rm R}$ do not localize.

Algebraic localization! No AL (exponential).

Previous experiments in that regime: $\sigma_R > \xi_{in}$ Θ

Expansion of a BEC in a weak speckle potential: numerical calculation (case of $\sigma_{\rm R} < \sigma_{\rm in}$)

- expansion of a 1D BEC (GP eq.)
- disorder present from the begining
- interactions maintained during the whole expansion

Exponential localization in the wings

From classical to Anderson localization in a speckle potential: a (provisional) conclusion

Strong disorder ($V_{\rm dis} \sim \mu_{\rm in}$)

Classical localization due to trapping between large peaks of the disordered potential, in the core and in the wings

Weak disorder $(V_{dis} \ll \mu_{in})$ Anderson localization predicted in the wings. Numbers encouraging enough that the experiment is underway ($\sigma_R = 0.6 \xi_{in}$). Hope to observe the density profile of localized wave function

Speckle: a wonderful tool for both theorists and experimentalists: well controlled random process.

References to our work on quantum gases in (speckle) random potential

Localization (coll. G. Shlyapnikov)

- D. Clément et al., PRL 95, 170409 (2005); NJP 8, 165 (2006)
- L. Sanchez-Palencia et al., PRL 98, 210401 (2007)

States of repulsive Bose Gases (coll. M. Lewenstein)

- L. Sanchez-Palencia, PRA 74, 053625 (2006)
- P. Lugan et al., PRL 98, 170403 (2007)

Localization of quasiparticles of an interacting BEC

• P. Lugan et al., cond mat 0707.2918, to appear in PRL

See poster tomorrow

Graduate students and post docs welcome

Bose Einstein Condensates

In a ferromagnetic yoke

In a random potential (localisation)

On an atom chip (applications)

Atom lasers

Atom lasers

Quantum atom optics with He*

Atomic Hanbury Brown and Twiss effect for fermions and bosons

A fully quantum effect

Pairs of correlated atoms

Entanglement?