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Strongly correlated electron systems



“Conventional” solid state materials

Bloch theorem for non-interacting 
electrons in a periodic potential
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“Conventional” solid state materials
Electron-phonon and electron-electron interactions 
are irrelevant at low temperatures

kx

ky

kF

Landau Fermi liquid theory: when frequency and 
temperature are smaller than EF electron systems 
are equivalent to systems of non-interacting fermions
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Non Fermi liquid behavior in novel quantum materials

CeCu2Si2. Steglich et al., 
Z. Phys. B 103:235 (1997)

UCu3.5Pd1.5
Andraka, Stewart, 
PRB 47:3208 (93)

Violation of the 
Wiedemann-Franz law
in high Tc superconductors
Hill et al., Nature 414:711 (2001)



Puzzles of high temperature superconductors

Maple, JMMM 177:18 (1998)Unusual “normal” state

Resistivity, opical conductivity,
Lack of sharply defined quasiparticles,
Nernst effect

Mechanism of Superconductivity

High transition temperature,
retardation effect, isotope effect,
role of elecron-electron 
and electron-phonon interactions

Competing orders

Role of magnetsim, stripes,
possible fractionalization



Applications of quantum materials:
High Tc superconductors



Applications of quantum materials: 
Ferroelectric RAM

Non-Volatile Memory

High Speed Processing

FeRAM in Smart Cards
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Modeling strongly correlated 
systems using cold atoms



Bose-Einstein condensation

Cornell et al., Science 269, 198 (1995)

Ultralow density condensed matter system
Interactions are weak and can be described theoretically from first principles



New Era in Cold Atoms Research
Focus on Systems with Strong Interactions

• Atoms in optical lattices

• Feshbach resonances

• Low dimensional systems

• Systems with long range dipolar interactions

• Rotating systems



Feshbach resonance and fermionic condensates
Greiner et al., Nature 426:537 (2003); Ketterle et al., PRL 91:250401 (2003)

Ketterle et al.,
Nature 435, 1047-1051 (2005)



One dimensional systems

Strongly interacting 
regime can be reached 
for low densities

One dimensional systems in microtraps.
Thywissen et al., Eur. J. Phys. D. (99);
Hansel et al., Nature (01);
Folman et al., Adv. At. Mol. Opt. Phys. (02)

1D confinement in optical potential
Weiss et al., Science (05);
Bloch et al., 
Esslinger et al.,



Atoms in optical lattices

Theory:  Jaksch et al. PRL (1998)

Experiment:  Kasevich et al., Science (2001);
Greiner et al., Nature (2001);
Phillips et al., J. Physics B (2002)       
Esslinger et al., PRL (2004);
and many more …



Strongly correlated systems
Atoms in optical latticesElectrons in Solids

Simple metals
Perturbation theory in Coulomb interaction applies. 
Band structure methods wotk

Strongly Correlated Electron Systems
Band structure methods fail.

Novel phenomena in strongly correlated electron systems:
Quantum magnetism, phase separation, unconventional superconductivity,
high temperature superconductivity, fractionalization of electrons …



Strongly correlated systems 
of photons



Strongly interacting photons



Atoms in a hollow core 
photonic crystal fiber

Nanoscale surface plasmons

α – group velocity dispersion
χ(3) – nonlinear susceptibility



Strongly interacting photons in 1-D optical waveguides

BEFORE: two level systems and 
insufficient mode confinement

Interaction corresponds to attraction.
Physics of solitons (e.g. Drummond)

Weak non-linearity due to insufficient 
mode confining

Limit on non-linearity due to 
photon decay

NOW: EIT and tight 
mode confinement

Sign of the interaction can be tuned

Tight  confinement of the
electromagnetic mode
enhances nonlinearity

Strong non-linearity without losses
can be achieved using EIT

Fermionized photons are possible (D. Chang et al.)



Why are we interested in making 
strongly correlated systems of cold 

atoms (and photons) ?



New Era in Cold Atoms Research
Focus on Systems with Strong Interactions

Goals

• Resolve  long standing questions in condensed matter physics
(e.g. origin of high temperature superconductivity)

• Resolve matter of principle questions
(e.g. existence of spin liquids in two and three dimensions)

• Study new phenomena in strongly correlated systems
(e.g. coherent far from equilibrium dynamics)



Outline

• Introduction
• Basics of cold atoms in optical lattices 

Bose Hubbard model. Superfluid to Mott transition. 
Dynamical instability.

• Two component Bose mixtures 
Quantum magnetism

• Fermions in optical lattices
Pairing in systems with repulsive interactions. High Tc mechanism

• Low-dimensional Bose systems in and out of equilibrium
Analysis of correlations beyond mean-field

Emphasis: detection and characterzation of many-body states



Atoms in optical lattices. 
Bose Hubbard model



Bose Hubbard model

tunneling of atoms between neighboring wells

repulsion of atoms sitting in the same well

U

t
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Bose Hubbard model. Mean-field phase diagram
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Set                .

Bose Hubbard model

Hamiltonian eigenstates are Fock states

Uµ

2 4



Bose Hubbard Model. Mean-field phase diagram

Particle-hole excitation 

Mott insulator phase
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Tips of the Mott lobes



Gutzwiller variational wavefunction

Normalization

Interaction energy

Kinetic energy

z – number of nearest neighbors



Phase diagram of the 1D Bose Hubbard model. 
Quantum Monte-Carlo study

Batrouni and Scaletter, PRB 46:9051 (1992)



Extended Hubbard Model

- on site repulsion - nearest neighbor repulsion

Checkerboard phase:

Crystal phase of bosons.
Breaks translational symmetry



Extended Hubbard model. Mean field phase diagram
van Otterlo et al., PRB 52:16176 (1995)

Hard core bosons.

Supersolid – superfluid phase with broken translational symmetry



Extended Hubbard model. 
Quantum Monte Carlo study

Sengupta et al., PRL 94:207202 (2005)



Dipolar bosons in optical lattices

Goral et al., PRL88:170406 (2002)



Bose Hubbard model away from equilibrium.
Dynamical Instability of strongly interacting 

bosons in optical lattices



Moving condensate in an optical lattice. Dynamical instability

v

Theory: Niu et al. PRA (01), Smerzi et al. PRL (02)
Experiment: Fallani et al. PRL (04)



Question: Question: How to connectHow to connect
the the dynamical instabilitydynamical instability (irreversible, classical)(irreversible, classical)
to the to the superfluid to Mott transitionsuperfluid to Mott transition (equilibrium, quantum)(equilibrium, quantum)
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SF MI
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Linear stability analysis: States with p> are unstable

Classical limit of the Hubbard model.                          
Discreet Gross-Pitaevskii equation

Current carrying states

r

Dynamical instability

Amplification of
density fluctuationsunstableunstable



GP regime                       . Maximum of the current for              .

When we include quantum fluctuations, the amplitude of the 
order parameter is suppressed

Dynamical instability for integer filling 

decreases with increasing phase gradient

Order parameter for a current carrying state

Current



SF MI

p

U/J

π/2

Dynamical instability for integer filling 
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Condensate momentum p/π

Dynamical instability occurs for

Vicinity of the SF-I quantum phase transition. 
Classical description applies for 



Dynamical instability. Gutzwiller approximation 
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We look for stability against small fluctuations

Altman et al., PRL 95:20402 (2005)



The first instability 
develops near the edges, 
where N=1
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Gutzwiller ansatz simulations (2D)

Optical lattice and parabolic trap. 
Gutzwiller approximation





Beyond semiclassical equations. Current decay by tunneling

ph
as

e

jph
as

e

jph
as

e

j

Current carrying states are metastable. 
They can decay by thermal or quantum tunneling 

Thermal activation Quantum tunneling



Decay rate from a metastable state. Example
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Need to consider dynamics of many degrees of 
freedom to describe a phase slip

A. Polkovnikov et al., Phys. Rev. A 71:063613 (2005) 



Strong broadening of the phase transition in d=1 and d=2

is discontinuous at the transition. Phase slips are not important.
Sharp phase transition

- correlation length

SF MI

p

U/J

π/2

Strongly interacting regime. Vicinity of the SF-Mott transition
Decay of current by quantum tunneling

Action of a quantum phase slip in d=1,2,3



Decay of current by quantum tunneling
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Decay of current by thermal activation
ph
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Escape from metastable state by thermal activation 
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Thermal
phase slip

∆E



Thermally activated current decay. Weakly interacting regime

∆E

Activation energy in d=1,2,3

Thermal fluctuations lead to rapid decay of currents

Crossover from thermal 
to quantum tunneling

Thermal
phase slip



Phys. Rev. Lett. (2004)

Decay of current by thermal fluctuations



Decay of current by thermal fluctuations

Experiments: Brian DeMarco et al., arXiv 0708:3074



Outline

• Introduction
• Basics of cold atoms in optical lattices 

Bose Hubbard model. Superfluid to Mott transition. 
Dynamical instability.

• Two component Bose mixtures 
Quantum magnetism

• Fermions in optical lattices. Bose-Fermi mixtures
Pairing in systems with repulsive interactions. Polarons

• Low-dimensional Bose systems in and out of equilibrium
Analysis of correlations beyond mean-field. 
Interference experiments with low dimensional condensates

Emphasis: detection and characterzation of many-body states



Magnetism in condensed matter systems



Ferromagnetism

Magnetic memory in hard drives.
Storage density of hundreds of 
billions bits per square inch.

Magnetic needle in a compass



Stoner model of ferromagnetism

Spontaneous spin polarization
decreases interaction energy
but increases kinetic energy of
electrons

Mean-field criterion I N(0) = 1

I – interaction strength
N(0) – density of states at the Fermi level



Antiferromagnetism

High temperature superconductivity in cuprates is always found
near an antiferromagnetic insulating state

Maple, JMMM 177:18 (1998)



(      + )

Antiferromagnetism

Antiferromagnetic Heisenberg model

(        - )S =

(        + )t =

AF =

AF = S t

Antiferromagnetic state breaks spin symmetry. 
It does not have a well defined spin



Spin liquid states

Alternative to classical antiferromagnetic state: spin liquid states

Properties of spin liquid states:

• fractionalized excitations
• topological order
• gauge theory description

Systems with geometric frustration

?



Spin liquid behavior in systems 
with geometric frustration

Kagome lattice

SrCr9-xGa3+xO19

Ramirez et al. PRL (90)
Broholm et al. PRL (90)
Uemura et al. PRL (94)

ZnCr2O4
A2Ti2O7

Ramirez et al. PRL (02)

Pyrochlore lattice



Engineering magnetic systems
using cold atoms in an optical lattice



t

t

Two component Bose mixture in optical lattice
Example:           .   Mandel et al., Nature 425:937 (2003)

Two component Bose Hubbard model



Quantum magnetism of bosons in optical lattices

Duan, Demler, Lukin, PRL 91:94514 (2003)

• Ferromagnetic
• Antiferromagnetic



Exchange Interactions in Solids
antibonding

bonding

Kinetic energy dominates: antiferromagnetic state

Coulomb energy dominates: ferromagnetic state



Two component Bose mixture in optical lattice.
Mean field theory + Quantum fluctuations

2 ndorder line

Hysteresis

1st order

Altman et al., NJP 5:113 (2003)



Questions:
Detection of topological order
Creation and manipulation of spin liquid states
Detection of fractionalization, Abelian and non-Abelian anyons
Melting spin liquids. Nature of the superfluid state

Realization of spin liquid 
using cold atoms in an optical lattice

Theory: Duan, Demler, Lukin PRL 91:94514 (03)

H = - Jx  Σ σi
x σj

x - Jy Σ σi
y σj

y - Jz Σ σi
z σj

z

Kitaev model Annals of Physics 321:2 (2006)



Superexchange interaction 
in experiments with double wells

Immanuel Bloch et al.



Preparation and detection of Mott states
of atoms in a double well potential



J

J

Use magnetic field gradient to prepare a state 

Observe oscillations between              and              states

Observation of superexchange in a double well potential
Theory: A.M. Rey et al., arXiv:0704.1413

Experiments:
I. Bloch et al.



Comparison to the Hubbard model
Experiments: I. Bloch et al.



Basic Hubbard model includes
only local interaction

Extended Hubbard model
takes into account non-local
interaction

Beyond the basic Hubbard model



Beyond the basic Hubbard model



Connecting double wells …

J’



Goal: observe antiferromagnetic order of 
cold atoms in an optical lattice!

Detection: quantum noise, using superlattice (merging two wells into one), …



Boson Fermion mixtures
Fermions interacting with phonons.
Polarons. Competing orders



Boson Fermion mixtures

BEC

Experiments: ENS, Florence, JILA, MIT, ETH, Hamburg, Rice, …

Bosons provide cooling for fermions
and mediate interactions. They create
non-local attraction between fermions

Charge Density Wave Phase
Periodic arrangement of atoms

Non-local Fermion Pairing
P-wave, D-wave, …



Boson Fermion mixtures

q/kF
/E

F
ω

 4

 3

 2

 1

 0
 2 1 0

“Phonons” :
Bogoliubov (phase) mode

Effective fermion-”phonon” interaction

Fermion-”phonon” vertex                   
Similar to electron-phonon systems 



Boson Fermion mixtures in 1d optical lattices
Cazalila et al., PRL (2003);   Mathey et al., PRL (2004)

Spinless fermions Spin ½ fermions

Note: Luttinger parameters can be determined using correlation function
measurements in the time of flight experiments. Altman et al. (2005)



Suppression of superfluidity of bosons by fermions

Fermion-Boson mixtures, see also Ospelkaus et al., cond-mat/0604179
Bose-Bose mixtures, see Catani et al., arXiv:0706.278



Fermions

Orthogonality catastrophy for fermions. 
Favors Mott insulating state of bosons

Bosons

Fermions

Competing effects of fermions on bosons

Fermions provide screening. 
Favors SF state of bosons



Uc-U
superfluid

Competing effects of fermions on bosons

0



Interference as a probe of low 
dimensional condensates



Interference of one dimensional condensates
Experiments: Schmiedmayer et al., Nature Physics (2005,2006)

Transverse imaging

long. imaging

trans.
imaging

Longitudial
imaging

Figures courtesy of 
J. Schmiedmayer



x1

d
Amplitude of interference fringes,          

Interference of one dimensional condensates

For identical 
condensates

Instantaneous correlation function

For independent condensates Afr is finite 
but ∆φ is random 

x2

Polkovnikov, Altman, Demler, PNAS 103:6125 (2006)



For impenetrable bosons                   and  

Interference between Luttinger liquids

Luttinger liquid at T=0

K – Luttinger parameter

Finite 
temperature

Experiments: Hofferberth,
Schumm, Schmiedmayer

For non-interacting bosons                    and



Interference of two dimensional condensates

Ly

Lx
Lx

Experiments:   Hadzibabic et al. Nature (2006)

Probe beam parallel to the plane of the condensates

Gati et al., PRL (2006)

Observation of the BKT transition. 
Talk by J. Dalibard



Fundamental noise in 
interference experiments

Amplitude of interference fringes is a quantum operator. 
The measured value of the amplitude will fluctuate from 
shot to shot. We want to characterize not only the average
but the fluctuations as well.



Shot noise in interference experiments

Interference with a finite number of atoms. 
How well can one measure the amplitude 
of interference fringes in a single shot?

One atom:                      No
Very many atoms:          Exactly
Finite number of atoms: ?

Consider higher moments of the interference fringe amplitude

, , and so on

Obtain the entire distribution function of



Shot noise in interference experiments

Interference of two condensates with 100 atoms in each cloud

Coherent states

Number states

Polkovnikov, Europhys. Lett. 78:10006 (1997)
Imambekov, Gritsev, Demler, 2006 Varenna lecture notes, cond-mat/0703766



Distribution function of fringe amplitudes 
for interference of fluctuating condensates

L

is a quantum operator. The measured value of 
will fluctuate from shot to shot.

Higher moments reflect higher order correlation functions

Gritsev, Altman, Demler, Polkovnikov,  Nature Physics (2006)
Imambekov, Gritsev, Demler, cond-mat/0612011; c-m/0703766

We need the full distribution function of



Higher moments of interference amplitude

L
Higher moments

Changing to periodic boundary conditions (long condensates)

Explicit expressions for        are available but cumbersome
Fendley, Lesage, Saleur, J. Stat. Phys. 79:799 (1995)

Method I: connection to quantum impurity model
Gritsev, Polkovnikov, Altman, Demler, Nature Physics 2:705 (2006)



Impurity in a Luttinger liquid

Expansion of the partition function in powers of g

Partition function of the impurity contains correlation functions
taken at the same point and at different times. Moments

of interference experiments come from correlations functions
taken at the same time but in different points. Euclidean invariance
ensures that the two are the same



Relation between quantum impurity problem
and interference of fluctuating condensates

Distribution function 
of fringe amplitudes

Distribution function can be reconstructed from
using completeness relations for the Bessel functions 

Normalized amplitude 
of interference fringes

Relation to the impurity partition function



is related to the Schroedinger equation
Dorey, Tateo, J.Phys. A. Math. Gen. 32:L419 (1999)

Bazhanov, Lukyanov, Zamolodchikov, J. Stat. Phys. 102:567 (2001)

Spectral determinant

Bethe ansatz solution for a quantum impurity

can be obtained from the Bethe ansatz following
Zamolodchikov, Phys. Lett. B 253:391 (91); Fendley, et al., J. Stat. Phys. 79:799 (95)
Making analytic continuation is possible but cumbersome

Interference amplitude and spectral determinant
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When K>1,                            is related to Q operators of 
CFT with c<0. This includes 2D quantum gravity, non-
intersecting loop model on 2D lattice, growth of random
fractal stochastic interface, high energy limit of multicolor 
QCD, …

Yang-Lee singularity

2D quantum gravity,
non-intersecting loops on 2D lattice

correspond to vacuum eigenvalues of Q operators of CFT
Bazhanov, Lukyanov, Zamolodchikov, Comm. Math. Phys.1996, 1997, 1999

From interference amplitudes to conformal field theories



How to generalize this analysis 
to 1d with open boundary 

conditions and 2d condensates?



Inhomogeneous Sine-Gordon models

ω
Ω

Bulk Sine-Gordon model Boundary Sine-Gordon model

Limiting cases

ω=Ω ω = δ(x−x0)



Inhomogeneous Sine-Gordon models

Expand in powers of g

ω
Ω



Higher moments of interference amplitude

Higher moments

Method II: connection to generalized sine-Gordon models and 
random surfaces                                  

Imambekov, Gritsev, Demler, 
cond-mat/

ω
Ω

Example: 
Interference of 2D condensates
Ω = entire condensate
ω = observation area



Diagonalize Coulomb gas interaction
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From SG models to fluctuating surfaces

Random surfaces interpretation:
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Simulate by Monte-Carlo!
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This method does not rely on the existence of the exact solution



Interference of 1d condensates at finite temperature.      
Distribution function of the fringe contrast

Luttinger parameter K=5



Experiments: Hofferberth, Schumm, Schmiedmayer et al.

Interference of 1d condensates at finite temperature.      
Distribution function of the fringe contrast

T=30nK
ξT=0.9µm

T=60nK
ξT=0.45µm



Non-equilibrium coherent
dynamics of low dimensional Bose 

gases probed in interference 
experiments



Studying dynamics using interference experiments

Prepare a system by 
splitting one condensate

Take to the regime of 
zero tunneling Measure time evolution

of fringe amplitudes



Relative phase dynamics

Hamiltonian can be diagonalized
in momentum space

A collection of harmonic oscillators
with

Need to solve dynamics of harmonic 
oscillators at finite T

Coherence

Bistrizer, Altman, PNAS (2007)
Burkov, Lukin, Demler, PRL 98:200404 (2007)

Conjugate variables



Relative phase dynamics

High energy modes,                        , quantum dynamics

Combining all modes

Quantum dynamics

Classical dynamics

For studying dynamics it is important 
to know the initial width of the phase

Low energy modes,                        , classical dynamics



Relative phase dynamics

Quantum regime

1D systems

2D systems

Classical regime

1D systems

2D systems

Burkov, Lukin, Demler, cond-mat/0701058

Different from the earlier theoretical work based on a single 
mode approximation, e.g. Gardiner and Zoller, Leggett



1d BEC: Decay of coherence
Experiments: Hofferberth, Schumm, Schmiedmayer, arXiv:0706.2259

double logarithmic plot of the 
coherence factor

slopes: 0.64 ± 0.08

0.67 ± 0.1

0.64 ± 0.06

get t0 from fit with fixed slope 2/3 
and calculate T from 

T5 = 110 ± 21 nK

T10 = 130 ± 25 nK

T15 = 170 ± 22 nK



Quantum dynamics of coupled condensates. Studying 
Sine-Gordon model in interference experiments

J

Prepare a system by 
splitting one condensate

Take to the regime of finite
tunneling. System
described by the quantum 
Sine-Gordon model Measure time evolution

of fringe amplitudes



Coupled 1d systems

J

Interactions lead to phase fluctuations 
within individual condensates

Tunneling favors aligning of the two phases

Interference experiments measure the relative phase



Quantum Sine-Gordon model

Quantum Sine-Gordon model is exactly integrable

Excitations of the quantum Sine-Gordon model 

Hamiltonian

Imaginary time action

soliton antisoliton many types of breathers



Dynamics of quantum sine-Gordon model
Hamiltonian formalism

Quantum action in space-time

Initial state

Initial state provides a boundary condition at t=0

Solve as a boundary sine-Gordon model



Boundary sine-Gordon model

Limit                    enforces boundary condition 

Exact solution due to Ghoshal and Zamolodchikov (93)
Applications to quantum impurity problem: Fendley, Saleur, Zamolodchikov, Lukyanov,…

Sine-Gordon
+ boundary condition in space

quantum impurity problem

Sine-Gordon
+ boundary condition in time

two coupled 1d BEC

Boundary
Sine-Gordon
Model

space and time
enter equivalently



Initial state is a generalized squeezed state

creates solitons, breathers with rapidity θ

creates even breathers only

Matrix                   and          are known from the exact solution
of the boundary sine-Gordon model 

Time evolution

Boundary sine-Gordon model

Coherence

Matrix elements can be computed using form factor approach
Smirnov (1992), Lukyanov (1997)



Quantum Josephson Junction

Initial state

Limit of quantum sine-Gordon 
model when spatial gradients
are forbidden

Time evolution

Eigenstates of the quantum Jos. junction Hamiltonian are given by Mathieu’s functions

Coherence



E2-E0 E4-E0

ω
E6-E0

power
spectrum

Dynamics of quantum Josephson Junction

Main peak

Smaller peaks

“Higher harmonics”

Power spectrum



Dynamics of quantum sine-Gordon model

Coherence

Main peak

“Higher harmonics”

Smaller peaks

Sharp peaks



Dynamics of quantum sine-Gordon model

Power spectrum

Gritsev, Demler, Lukin, Polkovnikov, cond-mat/0702343

A combination of
broad features
and sharp peaks.
Sharp peaks due
to collective many-body
excitations: breathers



Decoherence of Ramsey interferometry
Interference in spin space



Squeezed spin states for spectroscopy

Generation of spin squeezing using interactions.
Two component BEC. Single mode approximation

Motivation: improved spectroscopy. Wineland et. al. PRA 50:67 (1994)

Kitagawa, Ueda, PRA 47:5138 (1993)



Interaction induced collapse of Ramsey fringes

Experiments in 1d tubes:
A. Widera, I. Bloch et al.

time

Ramsey fringe visibility

- volume of the system



Spin echo. Time reversal experiments

No revival?

Expts: A. Widera, I. Bloch et al.

In the single mode approximation

Related earlier theoretical work: 
Kuklov et al., cond-mat/0106611 



Interaction induced collapse of Ramsey fringes.
Multimode analysis

Bosonized Hamiltonian (Luttinger liquid approach)

Changing the sign of the interaction reverses the interaction part 
of the Hamiltonian but not the kinetic energy

Experiments done in array of tubes. Strong fluctuations in 1d systems

Time dependent harmonic oscillators
can be analyzed exactly



Theory:  Luttinger liquid analysis
Gritsev, Lukin, Demler

Interaction induced collapse of Ramsey fringes
in one dimensional systems

Fundamental limit on Ramsey interferometry

Experiments in 1d tubes:
A. Widera, I. Bloch et al.




