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Neutral Atoms in Optical Lattices

Part 1

•Introduction

•Experimental Setup

•Loading a BEC into an Optical Lattice

•From a Superfluid to a Mott Insulator

•Coherence, Atom Number Statistics,

•Shell Structure, Finite Temperature Effects, ...

Part 2

•Tonks-Girardeau Gas

•Multi Orbital Mott Insulator Physics

•Spin Dependent Lattice Potentials

•Generation of Multiparticle-Entangled States

•Novel Quantum Information Schemes for Ultracold 
Atoms in Optical Lattices

•Generating Nonclassical Field States

Part 3

•Quantum Noise Correlations 

•Optical Superlattices

•Correlated Atom Pair Tunnelling

•Detection & Control of 
Superexchange Interactions

•Outlook



Experimental Setup:

Vacuum System
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Double Species MOT



Quadrupole trapMagnetic transport



QUIC-trapEvaporation &

symp. Cooling



Dipole trap + 

Optical lattices









Atomic Sources



LasersystemLaser Setup 780nm for Rb und 767nm for K

3x

  300mW



How do we detect these quantum gases ?



Udip = −d ·E

d = αE

Udip ∝ −α(ω)I(r)

Trapping Atoms in Light Field -

Optical Dipole Potentials

Energy of a dipole in an electric field:

An electric field induces a dipole moment:

Red detuning:

Atoms are trapped
in the intensity 
maxima

Blue detuning:

Atoms are 
repelled from the 
intensity maxima

See R. Grimm et al., Adv. At. Mol. Opt. Phys. 42, 95-170 (2000).

Pioneering work by Steven Chu



Optical Lattice Potential

�/2= 425 nm

Laser Laser

optical standing wave

Effectively: Harmonic Oscillators Coupled via Quantum 
    Mechanical Tunneling

J J J



…and in Higher Dimensions

Tunnel Coupling Tunable!



…and in Higher Dimensions

Tuning the Dimensionality



Ψ(x) =
∑

i

A(xj) · w(x − xj) · eiφ(xj)

Macroscopic Wave Function of a BEC 

in an Optical Lattice

Number of atoms on
jth lattice site

Phase of wave 
function on jth

lattice site

Localized wave function on
Jth lattice site

If there is a constant phase shift �� between lattice sites, 
the state is an eigenstate (Bloch wavefunction) of the lattice potential!

Quantum number characterizing these Bloch waves:

Crystal (Quasi-) momentum q =
2�

λ
∆φ



Time of flight interference pattern

• Interference between all waves coherently

emitted from each lattice site
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Periodicity of the 
reciprocal lattice

20ms

Wannier
envelope

Grating-like
interference



Momentum Distributions – 1D

Momentum distribution can 
be obtained by Fourier
transformation of the 
macroscopic wave function.

Ψ(x) =
∑

i

A(xj) · w(x − xj) · eiφ(xj)



Hφ (n)
q (x) = E(n)

q φ (n)
q (x) with H =

1
2m

p̂2 +V (x)

φ (n)
q (x) = eiqx ·u(n)

q (x)

HB u(n)
q (x) = E(n)

q u(n)
q (x) with HB =

1
2m

(p̂+q)2 +Vlat(x)

Single Particle in a Periodic Potential - Band Structure (1)

Solved by Bloch waves (periodic functions in lattice period)

q = Crystal Momentum or Quasi-Momentum
n = Band index

Plugging this into Schrödinger Equation, gives:



V (x) = ∑
r

Vrei2rkx and u(n)
q (x) = ∑

l
c(n,q)

l ei2lkx

V (x)u(n)
q (x) = ∑

l
∑
r

Vrei2(r+l)kxc(n,q)
l

(p̂+q)2

2m
u(n)

q (x) = ∑
l

(2h̄kl +q)2

2m
c(n,q)

l ei2lkx.

V (x) = Vlat sin2(kx) = −1
4

(
e2ikx + e−2ikx

)
+ c.c.

Single Particle in a Periodic Potential - Band Structure (2)

Use Fourier expansion

yields for the potential energy term

and the kinetic energy term

In the experiment standing wave interference pattern gives



∑
l

Hl,l′ · c(n,q)
l = E(n)

q c(n,q)
l with Hl,l′ =

⎧⎨
⎩

(2l +q/h̄k)2Er if l = l′
−1/4 ·V0 if |l − l′| = 1
0 else

⎛
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⎟⎟⎟⎟⎟⎟⎟⎟⎠

= E(n)
q

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

c(n,q)
0
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...
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Single Particle in a Periodic Potential - Band Structure (3)

Use Fourier expansion

Diagonalization gives us Eigenvalues and Eigenvectors!



Bandstructure - Blochwaves



wn(x− xi) = N −1/2 ∑
q

e−iqxiφ (n)
q (x)

Wannier Functions

An alternative basis set to the Bloch waves can be constructed through localized wave-
functions: Wannier Functions!



∆φj = (V ′λ/2) ∆t

∆φ = 0 ∆φ = π

Preparing Arbitrary Phase Differences

Between Neighbouring Lattice Sites

Phase difference between 
neighboring lattice sites

(cp. Bloch-Oscillations)

But: dephasing if gradient is 
left on for long times !



Mapping the Population of the Energy Bands 

onto the Brillouin Zones

Crystal momentum

Free particle
momentum

Population of nth band is 
mapped onto nth Brillouin 
zone !

Crystal momentum is conserved 
while lowering the lattice depth 
adiabatically !

A. Kastberg et al. PRL 74, 1542 (1995)
M. Greiner et al. PRL 87, 160405 (2001)



Experimental Results 
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Brillouin Zones in 2D
Momentum distribution of a dephased condensate 
after turning off the lattice potential adiabtically

2D

3D



Populating Higher Energy Bands

Stimulated Raman transitions 
between vibrational levels are 
used to populate higher energy 
bands.

Single lattice site Energy bands

Measured Momentum 
Distribution !



From a Conductor to a Band Insulator

Fermi Surfaces become directly visible!

M. Köhl et al. PRL (2005)



Bose-Hubbard Hamiltonian

Expanding the field operator in the Wannier basis of 
localized wave functions on each lattice site, yields :

Bose-Hubbard Hamiltonian

Tunnelmatrix element/Hopping element Onsite interaction matrix element

M.P.A. Fisher et al., PRB 40, 546 (1989); D. Jaksch et al., PRL 81, 3108 (1998)
Mott Insulators now at: NIST, ETHZ, MIT, Innsbruck, Florence, Garching...

J = −
∫

d3xw(x − xi)
(
− �

2

2m
∆ + Vlat(x)

)
w(x − xj) U =

4π�
2a

m

∫
d3x|w(x)|4

H = −J ∑
〈i, j〉

â†
i â j +∑

i
εin̂i +

1
2

U ∑
i

n̂i(n̂i −1)



â = ψ +∆â

a†
i â j = 〈â†

i 〉〈â j〉+ 〈â†
i 〉∆â j +∆â†

i 〈â j〉
= 〈â†

i 〉â j + â†
i 〈â j〉−〈â†

i 〉〈â j〉

〈âi〉 =
√

ni = ψ

H = −J ∑
〈i, j〉

â†
i â j +

1
2

U ∑
i

n̂i(n̂i −1)−µ ∑
i

n̂i

Describing the Phase Transition (1)

Usual Bogoliubov replacement does NOT capture SF-MI transition!
(However can describe Quantum Depletion due to interactions)

Self consistent mean field approximation (decoupling approx.)

K. Sheshadri et al., EPL 22, 257 (1993)
D. van Oosten, P. van der Straten & H. Stoof, PRA 63, 053601 (2001)



H = −zJψ ∑
i

(
â†

i + âi

)
+ ztψ2Ns +

1
2 ∑ n̂i(n̂i −1)−µ ∑

i
n̂i

Hi =
1
2

Ū n̂i(n̂i −1)− µ̄ n̂i −ψ
(

â†
i + âi

)
+ψ2 Ū = U/zJ

µ̄ = µ/zJ

H = H(0) +ψV

H(0) =
1
2

Ū n̂(n̂−1)− µ̄ n̂+ψ2

V = −(â† + â)

Describing the Phase Transition (2)

Is diagonal in site index i, so we can use an effective on-site Hamiltonian

Can diagonalize Hamiltonian in occupation number basis!
or use perturbation theory with tunnelling term to find phase diagram analytically....

D. van Oosten, P. van der Straten & H. Stoof, PRA 63, 053601 (2001)



E(2)
n =

n
Ū(n−1)− µ̄

+
n+1

µ̄ −Ūn

E(2)
n = ψ2 ∑

n′ �=n

|〈n|V |n′〉|2
E(0)

n −E(0)
n′

Eg(ψ) = a0 +a2ψ2 +O(ψ4)

a2 > 0 → ψ = 0
a2 < 0 → ψ �= 0

Describing the Phase Transition (3)

D. van Oosten, P. van der Straten & H. Stoof, PRA 63, 053601 (2001)

For our initial state (with fixed particle number), only second order perturbation gives a first 
correction.

a2 = 0 U/zJ ≈ n×5.83Phase transition for 



Superfluid – Mott-Insulator Phase Diagram

For an inhomogeneous system an 
effective local chemical potential can 
be introduced

Jaksch et al. PRL 81, 3108 (1998)



Superfluid Limit

Atoms are delocalized over the entire lattice !
Macroscopic wave function describes this state very well.

Poissonian atom number 
distribution per lattice site

n=1

Atom number 
distribution after 
a measurement 

〈âi〉i �= 0|ΨSF 〉U=0 =

(
M∑
i=1

â†
i

)N

|0〉



“Atomic Limit“ of a Mott-Insulator

n=1

Atoms are completely localized to lattice sites !

Fock states with a vanishing atom 
number fluctuation are formed.

Atom number 
distribution after 
a measurement

|ΨMott〉J=0 =
M∏
i=1

(
â†

i

)n

|0〉 〈âi〉i = 0



+

The Simplest Possible “Lattice“:

2 Atoms in a Double Well

0.5 x

Superfluid State MI State

0.25 x

0.25 x

Average atom
number per site:

Average onsite 
Interaction per site:

<n> = 1 <n> = 1

<Eint> = � U <Eint> = 0

+

+



Quantum Phase Transition (QPT)  from a 

Superfluid to a Mott-Insulator

At the critical point gc the

system will undergo a phase 
transition from a superfluid 
to an insulator !

This phase transition occurs even 
at T=0 and is driven by quantum 
fluctuations !

Characteristic for a QPT

•Excitation spectrum is dramatically modified at the critical point.

•U/J < gc (Superfluid regime)

Excitation spectrum is gapless

•U/J > gc (Mott-Insulator regime)

Excitation spectrum is gapped U/J = z 5.8

Critical ratio for:

see Subir Sachdev, Quantum Phase Transitions,
Cambridge University Press



Ground State of an Inhomogeneous System

From Jaksch et al. PRL 81, 3108 (1998)

From M. Niemeyer and H. Monien 
(private communication)



Momentum Distribution for Different Potential Depths

0 Erecoil

22 Erecoil



Phase coherence of a Mott insulator

Does a Mott insulator produce an interference 

pattern ?

F. Gerbier et al., PRL (2005)

Theory : V. N. Kashurnikov et al., PRA 66, 031601 (2002).
� R. Roth & K. Burnett, PRA 67, 031602 (2003).



Quantitative Analysis of Interference Pattern

Visibility
measures
coherence

nmaxnmin

Visibility decays
slowly with
increasing

lattice
depth!



Excitations in the zero tunneling limit

Perfect Mott insulator ground state

• Low energy excitations :

• Particle/hole pairs couples to the ground state :

Energy E0

Energy E0+U, separated from the ground state 

by an interaction gap U

n0: filling factor
Here n0=1



Ground state for  J=0 : 

``perfect´´ Mott insulator

Ground state for finite J<<U :

treat the hopping term Hhop in 1st order perturbation

=

Coherent admixture of particle/holes at finite J/U

Deviations from the perfect Mott Insulator

J

U



Predictions for the visibility

Perfect MI

MI with 

particle/hole pairs

Perturbation approach predicts a finite visibility, scaling as (U/J)-1



Comparison with experiments

Average slope measured to be -0.97(7)



Many-body calculation for the homogeneous case

• 1st order calculation : admixture of particle/hole pairs to the MI 
 bound to neighboring lattice sites

• Higher order in J/U : particle/holes excitations become mobile

Dispersion relation of the excitations is still characterized by an interaction gap.

One can obtain analytically the interference pattern (momentum distribution) for a given n0.

A more careful theory

More details in :

D. van Oosten et al. PRA 63, 053601 (2001) and following papers
D. Gangardt et al., cond-mat/0408437 (2004)
K. Sengupta and N. Dupuis, PRA 71, 033629 (2005)

F. Gerbier et al., PRA 72, 53606 (2005)



From a Superfluid to a Mott Insulator

Localized particles Mott Insulator State

Delocalized particles Superfluid State

Phase coherence Number statistics Density Distribution



How can we Probe the Number Statistics?

We want to know:

1) How many sites with 1 atom

2) How many sites with 2 atoms

3) How many sites with 3 atoms

4) …

For a weakly interacting BEC, one would obtain Poissonian

type number distribution (e.g. coherent states on each 

lattice site)

F. Gerbier et al., PRL 96, 090401 (2006) 
G.Campbell et al, Science 313, 649 (2006) 



Spin Changing Collisions

Spin-dependent case

m2

m3

m4
Spin-dependent interaction strength

s-wave collisions

Spin-independent case

m1



|0, 0〉 ↔ (|↑, ↓〉 + |↓, ↑〉) /
√

2

Spin Changing Collisions in an Optical Lattice

Collisionally induced 
„Rabi-Type“ Oscillations



AC-“Stark“ shift control of the resonance frequency

Detuning �0 is present even at 

zero magnetic field

Spin-1 two-level system at zero magnetic field

�0

�M

Energy shift due to microwave 
field can bring levels into 
resonance.

f=2

f=1

H. Pu and P. Meystre PRL 2000 and
Duan, Sorensen, Cirac, Zoller PRL 2000



Energy shift can be tuned by power of 

the  microwave and detuning

�0+�(B2)

AC-Stark shift control of the resonance frequency

∆E ∝
Ω2

M
4∆



F. Gerbier et al., PRA 73, 041602 (2006)

B=0.4G

�=�0+�(B2)�=0

AC-Stark shift control of the resonance frequency

N+1 +N−1

Ntot
∝

(
Ω0

Ω′

)2



Amplitude decrease due to single site spectators

Sensitive and non-
destructive detector
for doubly occupied 

lattice sites

On shell-structure see:

Jaksch et al., PRL (1998)

Batrouni et al. PRL (2000); 

Kashurnikov, Prokof´ev, Svistunov, PRA (2002)

Alet et al., PRA (2004), recent work P. Denteneer



Quantum Spin Oscillations as 

Non-Destructive Probe of Atom Number Statistics

Classical field (mean field) limit (continuous frequencies)

Quantum limit (discrete frequencies)

Leads to quantum dynamics beyond mean field!
Collapse & Revivals, Cat states, etc.

Cf. Work of L. You, J. Ho,…

Amplitude of Spin-Changing

 Oscillations at Freq �Nat

Number of sites with
Nat atoms

Resembles exp. in Cavity QED to reveal photon number statistics (Haroche, Walther)
see also work of G. Campbell et al. (MIT)



U

What is the atom number distribution in a lattice?

Mott-Insulator state

Creation of Mott-shells

On shell-structure see:

Jaksch et al., PRL (1998)

Batrouni et al. PRL (2000); 

Kashurnikov, Prokof´ev, Svistunov, PRA (2002)

Alet et al., PRA (2004)



U

Mott insulator

What is the number distribution in a lattice??



Mott insulator

Strong suppression of n=2 
sites for low atom numbers

What is the number distribution in a lattice??



Mott insulator

Formation of Mott-Shells

What is the number distribution in a lattice??



Mott insulator

Formation of Mott-Shells
Poissonian number 

distribution

Superfluid

Can be measured with 
our non-destructive 

detector for sites with 
two atoms.

What is the number distribution in a lattice??

Related scheme proposed: D.C. Roberts, K. Burnett, PRL (2003)



Prepare the system at a certain 
lattice depth and atom number:

Quickly increase lattice depth in order
to preserve atom number statistics:

Amplitude of 
coherent spin-

oscillations

Measure of sites 
with two or more 

atoms per site

What is the number distribution in a lattice??

F. Gerbier et al., PRL (2006)



Atom number statistics…N=2 sites vs Total Atom Number

n=1

n=1

n=2

F. Gerbier et al., PRL 96, 090401 (2006)





Probing the density distribution

B=152.95 G

B=152.96 G

B=152.97 G

B=152.98 G

B=152.99 G

B=153.00 G

B=153.01 G

9 G
6739.190 MHz

Atoms on the line of resonance are transferred
 to another hyperfine state!



Dissecting a Mott Insulator

High spatial resolution of up to 1 µm can be achieved!

S. Fölling, PRL 97, 060403 2006



What to expect…

BEC

Mott insulator 



Density Profile in the SF Regime



In Trap Atom Number Resolved Profiles - MI



Mott Insulator Shell Radii

Good agreement 
with ab-initio 
T=0 theory!



In Trap Observation of the Transition

from a Compressible SF to an Incompressible MI



nh(µ,T ) sh(µ,T )

µloc(r) = µ −VT (r)

U0n−µ µ −U(n0 −1)

Estimating Finite Temperature Effects

Let us consider isolated wells (J=0):

Particle & Entropy densities

Work in local density approximation

Lowest lying excited states within Mott domains 

Free energy cost for
adding a particle

Free energy cost for
removing a particle

n0 −1,n0,n0 +1
Higher lying excitations cost at least energy 
U and are suppressed by           !e−βU

Restrict States to



z0 = ∑
n

e−β (E(n)−µn)

E(n) =
1
2

Un(n−1)

n̄0 ≈ n0 +
(

B(+) −B(−)
)

/z0

Var(n)0 ≈
(

B(+) +B(−)
)

/z2
0

B(−) = eβ (U(n0−1)−µ)B(+) = eβ (µ−Un0)

z0 = 1+B(+) +B(−)

Onsite Thermodynamics

Onsite Partition Function:

with

We obtain

with

being the Boltzmann factors for the addition/subtraction of a particle from the
„background“ value n0.

F. Gerbier arXiv:0705.3956



T ∗ ≈ 0.2U/kB

Thermal Effects on Shell Structure

F. Gerbier arXiv:0705.3956

Shell structure is completely
destroyed by 

thermal defects for:



kBTc ≈ zJ(n0 +1)/2

Tc � T ∗

Thermal Effects for Finite J

Superfluid shells will 
turn normal for

F. Gerbier arXiv:0705.3956,
see also: T.-L. Ho cond-mat/0703169

with



What can we hope to reach?

For perfect adiabatic loading, entropy in BEC equals entropy in MI state!

F. Gerbier arXiv:0705.3956

ω f = 2π ×70Hz

U
U

Load into 20 Er lattice.

ω f = 2π ×70Hz
For fixed trap frequency 

For fixed initial temperature
Ti=0.3 Tc0

U
U



Finite Temperature Effects (1)

Integrated Profiles Radial Profiles

kBT=0.01U



Finite Temperature Effects (2)

Integrated Profiles Radial Profiles

kBT=0.1U



Finite Temperature Effects (3)

Integrated Profiles Radial Profiles

kBT=0.5U

Comparing with our measured integrated profiles, we find that

kBTexp<0.1U



What Happens to the Relative Phase of 

two Quantum Liquids over Time ?

Start with a single
Bose-Einstein condensate

Split it into two BECs with a 
constant relative phase �

BEC 1 BEC 2

Fundamental question arises:

What happens to the relative phase between 
the two condensates over time ?

What happens to the individual wave functions 
of the two BECs over time ?

Relative phase �

M. Greiner, O. Mandel, T. W. Hänsch and I. Bloch 
Nature, 419 (6901), 2002 



Dynamical Evolution of a Many Atom State 

due to Cold Collision

How do collisions affect the 
many body state in time ?

Phase evolution of the 
quantum state of two 
interacting atoms:

Collisional phase 

•Phase shift is coherent !

•Can be used for quantum computation
(see Jaksch, Briegel, Cirac, Zoller schemes)

•Leads to dramatic effects beyond mean-
field theories !

Collisional phase of n-
atoms in a trap:



Time Evolution of a Coherent State due to Cold Collisions

+

+

+

Coherent state in each lattice 
site !

=

1. Here�  = amplitude of the 

coherent state

2. Here |�|2 = average 

number of atoms per lattice 
site



Freezing Out Atom Number Fluctuations

A

B
Ramp up lattice fast from the 
superfluid regime (A) to the MI 
regime (B), such that atoms do not 
have time to tunnel !

Atom number fluctuations at (A) are “frozen“  !



Collapse and Revival of the 

Matter Wave Field due to Cold Collisions

Quantum state in each lattice site (e.g. for a coherent state)

Matter wave field on the ith lattice site

1. Matter wave field collapses but 
revives after times multiple times 
of h/U !

2. Collapse time depends on the 
variance ��of the atom number 

distribution !

Yurke & Stoler, 1986, F. Sols 1994; Wright et al. 1997; Imamoglu, Lewenstein & You et al. 1997, 
Castin & Dalibard 1997, E. Altman & A. Auerbach 2002, G.-B. Jo et al 2006

Similiar to Collapse and Revival of Rabi-Oscillations in Cavity QED !



Dynamical Evolution of a Coherent State 

due to Cold Collisions

The dynamical evolution  can be 
visualized through the Q-function

Characterizes overlap of our 
input state with an arbitrary 
coherent state 

Re(�)

Im
(�

)



Dynamical Evolution of a Coherent State 

due to Cold Collisions

time

Re(�)

Im
(�

)

0

0

-4

4

-4 4

G.J. Milburn & C.A. Holmes PRL 56, 2237 (1986);
B. Yurke & D. Stoler PRL 57, 13 (1986)



Dynamical Evolution of the Interference Pattern

t=600 µst=450 µst=400 µs

t=300 µst=200 µst=150 µst=50 µs

After a potential jump from VA=8Er to VB=22Er.



Collapse and Revival Ncoh/Ntot

Up to 5 revivals are visible !

Oscillations after lattice potential jump from 8 Erecoil to 22 Erecoil



Revival Frequency vs. Lattice Potential Depth

h/U from theory



Influence of the Atom Number Statistics on the 

Collapse Time

Final potential depth VB=22Er

VA=11Er

VA=4Er



tc/trev for Different Initial Potential Depths

Atom Number 
Statistics

n=1, U/J	0

Independent proof of sub-Poissonian
atom number statistics for finite U/J !

Atom Number 
Statistics

n=1, U/J=17



The End....
...for today...




