Summer School on Novel Quantum Phases and Non-Equilibrium Phenomena in Cold Atomic Gases

27 August - 7 September, 2007

Introduction to experiments in optical lattices - Part I

Immanuel Bloch
University of Mainz

Simon Fölling, Stefan Trotzky, Patrick Cheinet, Artur Widera, Fabrice Gerbier, Michael Feld, Ute Schnorrberger, Robert Saers, Torben Müller,

Thorsten Best, Ulrich Schneider,
Sebastian Will, Dries van Oosten, Lucia
Hackermüller, Martin Zwierlein, Christoph Clausen,
Stefan Kuhr, Jacob Sherson,
Christof Weitenberg, Manuel Endres, Oliver Loesdau

Marionna Morena, Belén Paredes
Markus Greiner, Olaf Mandel,
I.B.

Many inspiring discussions:
E. Demler, M.D. Lukin,
A. Polkovnikov, A.-M. Rey, V. Gritsev
funding by
€ DFG, European Union,
www.quantum.physik.uni-mainz.de
\$ AFOSR
Johannes Gutenberg-Universität, Mainz

Neutral Atoms in Optical Lattices

Experimental Setup:
Vacuum System

Atomic Sources

How do we detect these quantum gases?

Trapping Atoms in Light Field Optical Dipole Potentials

Energy of a dipole in an electric field:

$$
U_{d i p}=-\mathbf{d} \cdot \mathbf{E}
$$

An electric field induces a dipole moment:

$$
\mathbf{d}=\alpha \mathbf{E}
$$

$$
U_{d i p} \propto-\alpha(\omega) I(\mathbf{r})
$$

Red detuning:

Atoms are trapped in the intensity maxima

Blue detuning:

Atoms are repelled from the intensity maxima

See R. Grimm et al., Adv. At. Mol. Opt. Phys. 42, 95-I 70 (2000).
Pioneering work by Steven Chu MAINZ

Optical Lattice Potential

Effectively: Harmonic Oscillators Coupled via Quantum Mechanical Tunneling

...and in Higher Dimensions

Tunnel Coupling Tunable!

...and in Higher Dimensions

Tuning the Dimensionality

Macroscopic Wave Function of a BEC in an Optical Lattice

Number of atoms on jth lattice site

Phase of wave function on $j^{\text {th }}$ lattice site

If there is a constant phase shift $\Delta \phi$ between lattice sites, the state is an eigenstate (Bloch wavefunction) of the lattice potential!

Quantum number characterizing these Bloch waves:
Crystal (Quasi-) momentum

$$
q=\frac{2 \hbar}{\lambda} \Delta \phi
$$

Time of flight interference pattern

- Interference between all waves coherently emitted from each lattice site

Momentum Distributions - 1D

Momentum distribution can

 be obtained by Fourier transformation of the macroscopic wave function.$$
\Psi(x)=\sum_{i} A\left(x_{j}\right) \cdot w\left(x-x_{j}\right) \cdot e^{i \phi\left(x_{j}\right)}
$$

Single Particle in a Periodic Potential - Band Structure (1)

$$
H \phi_{q}^{(n)}(x)=E_{q}^{(n)} \phi_{q}^{(n)}(x) \quad \text { with } \quad H=\frac{1}{2 m} \hat{p}^{2}+V(x)
$$

Solved by Bloch waves (periodic functions in lattice period)

$$
\phi_{q}^{(n)}(x)=e^{i q x} \cdot u_{q}^{(n)}(x)
$$

$$
\begin{aligned}
& q=\text { Crystal Momentum or Quasi-Momentum } \\
& n=\text { Band index }
\end{aligned}
$$

Plugging this into Schrödinger Equation, gives:

$$
H_{B} u_{q}^{(n)}(x)=E_{q}^{(n)} u_{q}^{(n)}(x) \quad \text { with } \quad H_{B}=\frac{1}{2 m}(\hat{p}+q)^{2}+V_{\text {lat }}(x)
$$

Single Particle in a Periodic Potential - Band Structure (2)

Use Fourier expansion

$$
V(x)=\sum_{r} V_{r} e^{i 2 r k x} \quad \text { and } \quad u_{q}^{(n)}(x)=\sum_{l} c_{l}^{(n, q)} e^{i 2 l k x}
$$

yields for the potential energy term

$$
V(x) u_{q}^{(n)}(x)=\sum_{l} \sum_{r} V_{r} e^{i 2(r+l) k x} c_{l}^{(n, q)}
$$

and the kinetic energy term

$$
\frac{(\hat{p}+q)^{2}}{2 m} u_{q}^{(n)}(x)=\sum_{l} \frac{(2 \hbar k l+q)^{2}}{2 m} c_{l}^{(n, q)} e^{i 2 l k x}
$$

In the experiment standing wave interference pattern gives

$$
V(x)=V_{l a t} \sin ^{2}(k x)=-\frac{1}{4}\left(e^{2 i k x}+e^{-2 i k x}\right)+\text { c.c. }
$$

Single Particle in a Periodic Potential - Band Structure (3)

Use Fourier expansion

$$
\begin{gathered}
\sum_{l} H_{l, l^{\prime}} \cdot c_{l}^{(n, q)}=E_{q}^{(n)} c_{l}^{(n, q)} \quad \text { with } \quad H_{l, l^{\prime}}= \begin{cases}(2 l+q / \hbar k)^{2} E_{r} & \text { if } l=l^{\prime} \\
-1 / 4 \cdot V_{0} & \text { if }\left|l-l^{\prime}\right|=1 \\
0 & \text { else }\end{cases} \\
\left(\begin{array}{ccc}
(q / \hbar k)^{2} E_{r} & -\frac{1}{4} V_{0} & 0 \\
-\frac{1}{4} V_{0} & (2+q / \hbar k)^{2} E_{r} & -\frac{1}{4} V_{0} \\
0 & -\frac{1}{4} V_{0} & (4+q / \hbar k)^{2} E_{r} \\
0 & -\frac{1}{4} V_{0} \\
-\frac{1}{4} V_{0} & \ddots
\end{array}\right) \cdots\left(\begin{array}{c}
c_{0}^{(n, q)} \\
c_{1}^{(n, q)} \\
c_{2}^{(n, q)} \\
\\
\vdots
\end{array}\right)=E_{q}^{(n)}\left(\begin{array}{l}
c_{0}^{(n, q)} \\
c_{1}^{(n, q)} \\
c_{2}^{(n, q)} \\
\vdots
\end{array}\right)
\end{gathered}
$$

Diagonalization gives us Eigenvalues and Eigenvectors!

Bandstructure - Blochwaves

(a)

Bloch wavefunction $\phi_{\mathrm{q}}^{(1)}(\mathrm{x}), \mathrm{V}_{\text {lat }}=8 \mathrm{E}_{\mathrm{r}}$

X
(b)

Density $\left|\phi_{q}^{(1)}(\mathrm{x})\right|^{2}, \mathrm{~V}_{\text {lat }}=8 \mathrm{E}_{\mathrm{r}}$

Wannier Functions

An alternative basis set to the Bloch waves can be constructed through localized wavefunctions: Wannier Functions!
(a)

$$
\begin{aligned}
& \quad w_{n}\left(x-x_{i}\right)=\mathscr{N}^{-1 / 2} \sum_{q} e^{-i q x_{i}} \phi_{q}^{(n)}(x) \\
& \text { Wannier function } \mathrm{w}(\mathrm{x}), \mathrm{v}_{\text {lat }}=3 \mathrm{E}_{\mathrm{r}}
\end{aligned} \quad \text { Density }|\mathrm{w}(\mathrm{x})|^{2}, v_{\text {lat }}
$$

(b)

Wannier function $w(x), V_{\text {lat }}=10 E_{r}$

x

Preparing Arbitrary Phase Differences

 Between Neighbouring Lattice Sites
$\phi_{j}=E_{j} \cdot t / \hbar$
Phase difference between neighboring lattice sites
$\Delta \phi_{j}=\left(V^{\prime} \lambda / 2\right) \Delta t$
(cp. Bloch-Oscillations)

But: dephasing if gradient is left on for long times !

$$
\Delta \phi=0 \quad \Delta \phi=\pi
$$

Mapping the Population of the Energy Bands

 onto the Brillouin Zones
A. Kastberg et al. PRL 74, 1542 (1995) M. Greiner et al. PRL 87, 160405 (200I)

Free particle momentum

Experimental Results

Momentum distribution of a dephased condensate after turning off the lattice potential adiabtically

2D

Populating Higher Energy Bands

Single lattice site

Energy bands

Measured Momentum
Distribution !

From a Conductor to a Band Insulator

Fermi Surfaces become directly visible!
M. Köhl et al. PRL (2005)

Bose-Hubbard Hamiltonian

Expanding the field operator in the Wannier basis of localized wave functions on each lattice site, yields :

$$
\hat{\psi}(\boldsymbol{x})=\sum_{i} \hat{a}_{i} w\left(\boldsymbol{x}-\boldsymbol{x}_{i}\right)
$$

Bose-Hubbard Hamiltonian

$$
H=-J \sum_{\langle i, j\rangle} \hat{a}_{i}^{\dagger} \hat{a}_{j}+\sum_{i} \varepsilon_{i} \hat{n}_{i}+\frac{1}{2} U \sum_{i} \hat{n}_{i}\left(\hat{n}_{i}-1\right)
$$

Tunnelmatrix element/Hopping element

$$
J=-\int d^{3} x w\left(\mathbf{x}-\mathbf{x}_{i}\right)\left(-\frac{\hbar^{2}}{2 m} \Delta+V_{l a t}(\mathbf{x})\right) w\left(\mathbf{x}-\mathbf{x}_{j}\right)
$$

Onsite interaction matrix element

$$
U=\frac{4 \pi \hbar^{2} a}{m} \int d^{3} x|w(\mathbf{x})|^{4}
$$

M.P.A. Fisher et al., PRB 40, 546 (1989); D. Jaksch et al., PRL 8I, 3108 (1998) Mott Insulators now at: NIST, ETHZ, MIT, Innsbruck, Florence, Garching...

Describing the Phase Transition (1)

$$
H=-J \sum_{\langle i, j\rangle} \hat{a}_{i}^{\dagger} \hat{a}_{j}+\frac{1}{2} U \sum_{i} \hat{n}_{i}\left(\hat{n}_{i}-1\right)-\mu \sum_{i} \hat{n}_{i}
$$

Usual Bogoliubov replacement does NOT capture SF-MI transition! (However can describe Quantum Depletion due to interactions)

$$
\hat{a}=\psi+\Delta \hat{a}
$$

Self consistent mean field approximation (decoupling approx.)

$$
\begin{aligned}
a_{i}^{\dagger} \hat{a}_{j} & =\left\langle\hat{a}_{i}^{\dagger}\right\rangle\left\langle\hat{a}_{j}\right\rangle+\left\langle\hat{a}_{i}^{\dagger}\right\rangle \Delta \hat{a}_{j}+\Delta \hat{a}_{i}^{\dagger}\left\langle\hat{a}_{j}\right\rangle \\
& =\left\langle\hat{a}_{i}^{\dagger}\right\rangle \hat{a}_{j}+\hat{a}_{i}^{\dagger}\left\langle\hat{a}_{j}\right\rangle-\left\langle\hat{a}_{i}^{\dagger}\right\rangle\left\langle\hat{a}_{j}\right\rangle
\end{aligned}
$$

$$
\left\langle\hat{a}_{i}\right\rangle=\sqrt{n_{i}}=\psi
$$

K. Sheshadri et al., EPL 22, 257 (1993)
D. van Oosten, P. van der Straten \& H. Stoof, PRA 63, 053601 (2001)

Describing the Phase Transition (2)

$$
H=-z J \psi \sum_{i}\left(\hat{a}_{i}^{\dagger}+\hat{a}_{i}\right)+z t \psi^{2} N_{s}+\frac{1}{2} \sum \hat{n}_{i}\left(\hat{n}_{i}-1\right)-\mu \sum_{i} \hat{n}_{i}
$$

Is diagonal in site index i , so we can use an effective on-site Hamiltonian

$$
H_{i}=\frac{1}{2} \bar{U} \hat{n}_{i}\left(\hat{n}_{i}-1\right)-\bar{\mu} \hat{n}_{i}-\psi\left(\hat{a}_{i}^{\dagger}+\hat{a}_{i}\right)+\psi^{2} \quad \begin{array}{ll}
\bar{U} & =U / z J \\
\bar{\mu}=\mu / z J
\end{array}
$$

Can diagonalize Hamiltonian in occupation number basis! or use perturbation theory with tunnelling term to find phase diagram analytically....

$$
\begin{gathered}
H=H^{(0)}+\psi V \\
H^{(0)}=\frac{1}{2} \bar{U} \hat{n}(\hat{n}-1)-\bar{\mu} \hat{n}+\psi^{2} \\
V=-\left(\hat{a}^{\dagger}+\hat{a}\right)
\end{gathered}
$$

Describing the Phase Transition (3)

For our initial state (with fixed particle number), only second order perturbation gives a first correction.

$$
\begin{gathered}
E_{n}^{(2)}=\psi^{2} \sum_{n^{\prime} \neq n} \frac{\left.|\langle n| V| n^{\prime}\right\rangle\left.\right|^{2}}{E_{n}^{(0)}-E_{n^{\prime}}^{(0)}} \\
E_{n}^{(2)}=\frac{n}{\bar{U}(n-1)-\bar{\mu}}+\frac{n+1}{\bar{\mu}-\bar{U} n}
\end{gathered}
$$

$$
E_{g}(\psi)=a_{0}+a_{2} \psi^{2}+\mathscr{O}\left(\psi^{4}\right)
$$

$$
\begin{aligned}
& a_{2}>0 \rightarrow \psi=0 \\
& a_{2}<0 \rightarrow \psi \neq 0
\end{aligned}
$$

Phase transition for $a_{2}=0 \leadsto U / z J \approx n \times 5.83$

Superfluid - Mott-Insulator Phase Diagram

Jaksch et al. PRL 8I, 3108 (1998)

For an inhomogeneous system an effective local chemical potential can be introduced

$$
\mu_{l o c}=\mu-\varepsilon_{i}
$$

Superfluid Limit

$$
H=-J \sum_{i, j} \hat{a}_{i}^{\dagger} \hat{a}_{j}+\frac{1}{2} U \sum_{i} \hat{n}_{i}\left(\hat{n}_{i}-1\right)
$$

Atoms are delocalized over the entire lattice! Macroscopic wave function describes this state very well.

$$
\left|\Psi_{S F}\right\rangle_{U=0}=\left(\sum_{i=1}^{M} \hat{a}_{i}^{\dagger}\right)^{N}|0\rangle
$$

Poissonian atom number distribution per lattice site

$$
\left\langle\hat{a}_{i}\right\rangle_{i} \neq 0
$$

Atom number

"Atomic Limit" of a Mott-Insulator

$$
H=-J \sum_{i, j} \hat{a}_{i}^{\dagger} \hat{a}_{j}+\frac{1}{2} U \sum_{i} \hat{n}_{i}\left(\hat{n}_{i}-1\right)
$$

Atoms are completely localized to lattice sites !

$$
\left|\Psi_{M o t t}\right\rangle_{J=0}=\prod_{i=1}^{M}\left(\hat{a}_{i}^{\dagger}\right)^{n}|0\rangle
$$

Fock states with a vanishing atom number fluctuation are formed.

Atom number distribution after a measurement

The Simplest Possible "Lattice":
 2 Atoms in a Double Well

Quantum Phase Transition (QPT) from a Superfluid to a Mott-Insulator

At the critical point \mathbf{g}_{c} the system will undergo a phase transition from a superfluid to an insulator !

This phase transition occurs even at $T=0$ and is driven by quantum fluctuations!

Characteristic for a QPT

- Excitation spectrum is dramatically modified at the critical point.
- U/J < gc (Superfluid regime)

Excitation spectrum is gapless

- $\mathrm{U} / \mathrm{J}>\mathrm{g}_{\mathrm{c}}$ (Mott-Insulator regime)

Excitation spectrum is gapped
Critical ratio for:

$$
U / J=z 5.8
$$

see Subir Sachdev, Quantum Phase Transitions, Cambridge University Press

Ground State of an Inhomogeneous System

From Jaksch et al. PRL 81, 3108 (1998)

Momentum Distribution for Different Potential Depths

Phase coherence of a Mott insulator

Does a Mott insulator produce an interference pattern?

F. Gerbier et al., PRL (2005)

Theory : V. N. Kashurnikov et al., PRA 66, 031601 (2002).
R. Roth \& K. Burnett, PRA 67, 031602 (2003).

Quantitative Analysis of Interference Pattern

$$
V=\frac{n_{\max }-n_{\min }}{n_{\max }+n_{\min }}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Visibility } \\
\text { measures } \\
\text { coherence }
\end{array}
\end{aligned}
$$

Excitations in the zero tunneling limit

Perfect Mott insulator ground state

$$
\left|\Psi_{0}\right\rangle=\prod_{i}\left|n_{0}\right\rangle_{i}
$$

- Low energy excitations :

$$
\mathrm{n}_{0} \text { : filling factor }
$$

$$
\text { Here } \mathrm{n}_{0}=1
$$

- Particle/hole pairs couples to the ground state :

$$
|\Psi\rangle_{\mathrm{ph}} \propto \sum_{\langle i, j\rangle} \hat{a}_{i}^{\top} \hat{a}_{j}\left|\Psi_{0}\right\rangle
$$

Energy $\mathrm{E}_{0}+\mathrm{U}$, separated from the ground state by an interaction gap U

Deviations from the perfect Mott Insulator

Ground state for $\mathrm{J}=0$:
' perfect' ${ }^{\text {' }}$ Mott insulator

$$
\left|\Psi_{0}\right\rangle=\prod_{i}\left|n_{0}\right\rangle_{i}
$$

Ground state for finite $\mathbf{J} \ll \mathbf{U}$:
treat the hopping term $\boldsymbol{H}_{\text {hop }}$ in Ist order perturbation

$$
\left|\Psi_{1}\right\rangle=-\sum_{n \neq g} \frac{H_{\mathrm{hop}}}{E_{g}^{(0)}-E_{n}^{(0)}}\left|\Psi_{0}\right\rangle
$$

Predictions for the visibility

Perfect MI

$$
V=0
$$

MI with

particle/hole pairs

$$
V \approx \frac{4}{3}\left(n_{0}+1\right) \frac{z J}{U}
$$

Perturbation approach predicts a finite visibility, scaling as (U/J) ${ }^{-1}$

Comparison with experiments

Average slope measured to be $\mathbf{- 0 . 9 7 (7)}$

A more careful theory

Many-body calculation for the homogeneous case

- Ist order calculation: admixture of particle/hole pairs to the MI bound to neighboring lattice sites
- Higher order in J/U : particle/holes excitations become mobile

Dispersion relation of the excitations is still characterized by an interaction gap.
One can obtain analytically the interference pattern (momentum distribution) for a given n_{0}.
More details in :
D. van Oosten et al. PRA 63, 05360 (2001) and following papers
D. Gangardt et al., cond-mat/0408437 (2004)
K. Sengupta and N. Dupuis, PRA 7I, 033629 (2005)
F. Gerbier et al., PRA 72, 53606 (2005) MANE

From a Superfluid to a Mott Insulator

Delocalized particles

Localized particles

Phase coherence

Wabababal
Superfluid State
$U / J \ll 1$

WWWM
Mott Insulator State $\quad U / J \gg 1$

How can we Probe the Number Statistics?

We want to know:

1) How many sites with I atom
2) How many sites with 2 atoms
3) How many sites with 3 atoms
4) ...

For a weakly interacting BEC, one would obtain Poissonian type number distribution (e.g. coherent states on each lattice site)

F. Gerbier et al., PRL 96, 09040I (2006)
G.Campbell et al, Science 3 I3, 649 (2006)

Spin Changing Collisions

Spin-independent case

s-wave collisions

Spin-dependent case

$V\left(\vec{r}-\vec{r}^{\prime}\right)=\frac{4 \pi \hbar^{2}}{M} \times \Delta a_{m,, m 4}^{m 1, m 2} \times \delta\left(\vec{r}-\vec{r}^{\prime}\right)$

Spin Changing Collisions in an Optical Lattice

Collisionally induced „Rabi-Type" Oscillations

$$
|0,0\rangle \leftrightarrow(|\uparrow, \downarrow\rangle+|\downarrow, \uparrow\rangle) / \sqrt{2}
$$

AC-"Stark" shift control of the resonance frequency

Spin-I two-level system at zero magnetic field

Detuning δ_{0} is present even at zero magnetic field

Energy shift due to microwave field can bring levels into resonance.
H. Pu and P. Meystre PRL 2000 and

Duan, Sorensen, Cirac, Zoller PRL 2000

AC-Stark shift control of the resonance frequency

Energy shift can be tuned by power of the microwave and detuning

$$
\Delta E \propto \frac{\Omega_{M}^{2}}{4 \Delta}
$$

AC-Stark shift control of the resonance frequency

Amplitude decrease due to single site spectators

Quantum Spin Oscillations as Non-Destructive Probe of Atom Number Statistics

Classical field (mean field) limit (continuous frequencies)
$\Omega(n) \square c_{2} n$

Quantum limit (discrete frequencies)

$$
\Omega_{N_{a t}}=\Omega_{0} \sqrt{N_{a t}\left(N_{a t}-1\right)} \quad \Omega_{2}=\sqrt{2} \Omega_{0} \quad \Omega_{3}=\sqrt{6} \Omega_{0} \quad \Omega_{4}=\sqrt{12} \Omega_{0}
$$

Leads to quantum dynamics beyond mean field!
Collapse \& Revivals, Cat states, etc.
Cf. Work of L. You, J. Ho,...

Amplitude of Spin-Changing Oscillations at Freq $\Omega_{\text {Nat }}$

Number of sites with N_{at} atoms

Resembles exp. in Cavity QED to reveal photon number statistics (Haroche, Walther)
see also work of G. Campbell et al. (MIT)

MANNZ

What is the atom number distribution in a lattice?

Kashurnikov, Prokof'ev, Svistunov, PRA (2002)
Alet et al., PRA (2004)

What is the number distribution in a lattice??

Mott insulator

What is the number distribution in a lattice??

Mott insulator

Strong suppression of $n=2$ sites for low atom numbers

What is the number distribution in a lattice??

Mott insulator

Formation of Mott-Shells

What is the number distribution in a lattice??

What is the number distribution in a lattice??

Prepare the system at a certain lattice depth and atom number:

Quickly increase lattice depth in order to preserve atom number statistics:

F. Gerber et al., PRL (2006)

Atom number statistics...N=2 sites vs Total Atom Number

Atom number
F. Gerbier et al., PRL 96, 09040 (2006)

Probing the density distribution

Atoms on the line of resonance are transferred to another hyperfine state!

Dissecting a Mott Insulator

High spatial resolution of up to I $\mu \mathrm{m}$ can be achieved!
S. Fölling, PRL 97, 0604032006

What to expect...

Density Profile in the SF Regime

In Trap Atom Number Resolved Profiles - MI

Mott Insulator Shell Radii

In Trap Observation of the Transition from a Compressible SF to an Incompressible MI

Estimating Finite Temperature Effects

Let us consider isolated wells $(\mathrm{J}=0)$: $\quad n_{h}(\mu, T) \quad s_{h}(\mu, T)$
Particle \& Entropy densities

Work in local density approximation

$$
\mu_{l o c}(\mathbf{r})=\mu-V_{T}(\mathbf{r})
$$

Lowest lying excited states within Mott domains

$$
\begin{array}{cc}
\quad U_{0} n-\mu & \mu-U\left(n_{0}-1\right) \\
\text { Free energy cost for } & \text { Free energy cost for } \\
\text { adding a particle } & \text { removing a particle }
\end{array}
$$

Higher lying excitations cost at least energy U and are suppressed by $e^{-\beta U}$!

Restrict States to
$n_{0}-1, n_{0}, n_{0}+1$

Onsite Thermodynamics

Onsite Partition Function: $\quad z_{0}=\sum_{n} e^{-\beta(E(n)-\mu n)}$
with $\quad E(n)=\frac{1}{2} U n(n-1)$

We obtain

$$
\begin{gathered}
\bar{n}_{0} \approx n_{0}+\left(B^{(+)}-B^{(-)}\right) / z_{0} \\
\operatorname{Var}(n)_{0} \approx\left(B^{(+)}+B^{(-)}\right) / z_{0}^{2}
\end{gathered}
$$

with

$$
\begin{gathered}
B^{(+)}=e^{\beta\left(\mu-U n_{0}\right)} \quad B^{(-)}=e^{\beta\left(U\left(n_{0}-1\right)-\mu\right)} \\
z_{0}=1+B^{(+)}+B^{(-)}
\end{gathered}
$$

being the Boltzmann factors for the addition/subtraction of a particle from the „background" value n0.
F. Gerbier arXiv:0705.3956

Thermal Effects on Shell Structure

Shell structure is completely destroyed by thermal defects for:

$$
T^{*} \approx 0.2 U / k_{B}
$$

F. Gerbier arXiv:0705.3956

Thermal Effects for Finite J

F. Gerbier arXiv:0705.3956,
see also: T.-L. Ho cond-mat/0703I69

Superfluid shells will turn normal for

$$
k_{B} T_{c} \approx z J\left(n_{0}+1\right) / 2
$$

with

$$
T_{c} \ll T^{*}
$$

What can we hope to reach?

For perfect adiabatic loading, entropy in BEC equals entropy in MI state!

Load into $20 \mathrm{E}_{\mathrm{r}}$ lattice.

For fixed trap frequency

$$
\omega_{f}=2 \pi \times 70 \mathrm{~Hz}
$$

For fixed initial temperature

$$
\mathrm{T}_{\mathrm{i}}=0.3 \mathrm{~T}_{\mathrm{c} 0}
$$

Finite Temperature Effects (1)

Integrated Profiles

Radial Profiles

$$
k_{B} T=0.0 I U
$$

Finite Temperature Effects (2)

Integrated Profiles

Radial Profiles

$$
k_{B} T=0.1 \mathrm{U}
$$

Finite Temperature Effects (3)

Integrated Profiles

Radial Profiles

$$
k_{B} T=0.5 U
$$

Comparing with our measured integrated profiles, we find that

$$
k_{B} T_{\exp }<0.1 U
$$ MANEVERT

What Happens to the Relative Phase of two Quantum Liquids over Time?

Fundamental question arises:

What happens to the relative phase between the two condensates over time?

What happens to the individual wave functions of the two BECs over time?
M. Greiner, O. Mandel, T. W. Hänsch and I. Bloch Nature, 419 (690I), 2002

Dynamical Evolution of a Many Atom State due to Cold Collision

How do collisions affect the many body state in time?

Phase evolution of the quantum state of two interacting atoms:

- Phase shift is coherent !
- Can be used for quantum computation (see Jaksch, Briegel, Cirac, Zoller schemes)
- Leads to dramatic effects beyond meanfield theories !

Collisional phase of n atoms in a trap:

$$
E_{n} t / \hbar=\frac{1}{2} U n(n-1) t / \hbar
$$

Time Evolution of a Coherent State due to Cold Collisions

Coherent state in each lattice site!

$$
|\Psi\rangle_{i}=e^{-|\alpha|^{2} / 2} \sum_{n} \frac{\alpha^{n}}{\sqrt{n!}}|n\rangle
$$

I. Here $\alpha=$ amplitude of the coherent state
2. Here $|\alpha|^{2}=$ average number of atoms per lattice site

Freezing Out Atom Number Fluctuations

Ramp up lattice fast from the superfluid regime (A) to the MI regime (B), such that atoms do not have time to tunnel!

Atom number fluctuations at (A) are "frozen" !

$$
|\Psi(0)\rangle_{i}=e^{-|\alpha|^{2} / 2} \sum_{n} \frac{\alpha^{n}}{\sqrt{n!}}|n\rangle
$$

Collapse and Revival of the
 Matter Wave Field due to Cold Collisions

Quantum state in each lattice site (e.g. for a coherent state)

$$
|\Psi(t)\rangle_{i}=e^{-|\alpha|^{2} / 2} \sum_{n} \frac{\alpha^{n}}{\sqrt{n!}} e^{-\frac{1}{2} U n(n-1) t / h}|n\rangle
$$

Matter wave field on the $i^{\text {th }}$ lattice site

$$
\Psi_{i}(t)={ }_{i}\langle\Psi(t)| \hat{a}_{i}|\Psi(t)\rangle_{i}
$$

I. Matter wave field collapses but revives after times multiple times of h / U !
2. Collapse time depends on the variance σ_{N} of the atom number distribution!

Yurke \& Stoler, I986, F. Sols 1994; Wright et al. I997; Imamoglu, Lewenstein \& You et al. I997,

Dynamical Evolution of a Coherent State due to Cold Collisions

The dynamical evolution can be visualized through the Q-function

$$
\boldsymbol{Q}=\frac{\left|\left\langle\alpha \mid \psi_{i}(t)\right\rangle\right|^{2}}{\pi}
$$

Characterizes overlap of our input state with an arbitrary coherent state $|\alpha\rangle$
 MAINZ

Dynamical Evolution of a Coherent State due to Cold Collisions

G.J. Milburn \& C.A. Holmes PRL 56, 2237 (1986); B. Yurke \& D. Stoler PRL 57, 13 (1986)

Dynamical Evolution of the Interference Pattern

After a potential jump from $V_{A}=8 E_{r}$ to $V_{B}=22 E_{r}$.

Collapse and Revival $N_{\text {coh }} / \mathbf{N}_{\text {tot }}$

Oscillations after lattice potential jump from $8 E_{\text {recoil }}$ to $22 E_{\text {recoil }}$

Up to 5 revivals are visible!

Revival Frequency vs. Lattice Potential Depth

Influence of the Atom Number Statistics on the Collapse Time

Final potential depth $V_{B}=22 E_{r}$

$t_{c} t_{\text {rev }}$ for Different Initial Potential Depths

Atom Number

Statistics
$n=I, U / J \approx 0$

Atom Number

Statistics
$A=I, U / J=I 7$

Independent proof of sub-Poissonian atom number statistics for finite U / J !

The End.... ...for today...

