

1859-9

Summer School on Novel Quantum Phases and Non-Equilibrium Phenomena in Cold Atomic Gases

27 August - 7 September, 2007

Transport in cold atomic systems: theory and experiments

Qian Niu University of Texas at Austin

Transport of Cold Atoms in Optical Lattices

Qian Niu

University of Texas at Austin

Collaborators (1995-2005) : Biao Wu, Jie Liu, Dae-Il Choi, M. G. Raizen,

Support: NSF, Welch

Outline

- 1. Optical lattice and transport
- 2. Non-interacting cold atoms
- 3. Interacting BEC atoms
- 4. Conclusion

Optical Lattice and Motion

• Stationary

Constant Motion
V=δν λ

- Constant force
 - Gravity
 - Inertial force from acceleration

Classical and Quantum Effects

- Optical lattice + constant force = tilted lattice potential
- Classical: trapped or untrapped
- Quantum: tilted Bloch bands
 - Bloch Oscillations
 - Wannier Stark Ladders
 - Zener tunneling

Raizen, Salomon, Niu, *Physics Today*, 1996.

Interacting BEC atoms

- Screening of lattice potential by mean field interaction
- --Choi and Niu, PRL 1999
- Enhanced Landau-Zener tunnelling due to nonlinear effects
- --Wu and Niu, PRA 2000; Liu, Wu, Niu PRL 2003
- Dynamical and Landau instabilities of BEC Bloch state
- --Wu and Niu, PRA 2001

Non-interacting cold atoms

- Pre-BEC, laser cooled atoms
- Low density
 - non-interacting. No distinction between bosons and fermions. Single particle physics.
- Cold
 - Kinetic energy of atoms are comparable to photon recoil energy
 - Quantum dynamics in optical lattice

Bloch Oscillations

• Bloch bands

2

2

• Crystal momentum $dq/dt = F / \hbar$

Bahan et al, PRL 1996

Landau-Zener Tunneling

• Two level system

$$i\frac{d}{dt}\begin{pmatrix}\phi_1\\\phi_2\end{pmatrix} = \frac{1}{2}\begin{pmatrix}\gamma & v\\v & -\gamma\end{pmatrix}\begin{pmatrix}\phi_1\\\phi_2\end{pmatrix}, \quad \gamma = \alpha t$$

• Tunneling probability

$$r = \exp\left(-\frac{\pi v^2}{2\alpha}\right)$$

Tunneling between bands

• Tunneling rate across a gap

$$\gamma = \alpha \exp(-\alpha_c/\alpha), \quad \alpha_c = \pi \Delta^2/K$$

- Niu et al, PRL 1996
- Experiment
 - Bharucha et al, PRA 1997

Clean up atoms above gap

Wannier-Stark Ladders

- Tilted Bloch bands and ladders
 - $\delta E = h/\tau_B$ - Niu et al PRL 1996
 - **T** (
- Experiment
 - Wilkinson et al PRL 1996

Splitting = $\delta E / h$

Bloch Oscillation and Zener Tunneling of BEC

• BEC in an stationary optical lattice under gravity – Anderson et al, Science 1998

Interaction Effects

- Mott insulator at strong interaction
- Interaction effects already manifest well within the weak coupling regime
 - Focus of this talk

Screening effects

- **GP** equation $i \frac{\partial \phi}{\partial t} = -\frac{1}{2} \frac{\partial^2 \phi}{\partial x^2} + V_0 \cos(x)\phi + C|\phi|^2 \phi$
- Effective potential
- Experiment:
 - Morsch et al PRL 2001

FIG. 2. Bloch oscillations of the condensate mean velocity v_m in an optical lattice. (a) Acceleration in the counterpropagating lattice with $d = 0.39 \ \mu\text{m}$, $U_0 \approx 0.29E_{\text{B}}$, and $a = 9.81 \ \text{m s}^{-2}$. Solid line: theory. (b) Bloch oscillations in the rest frame of the lattice, along with the theoretical prediction (solid line) derived from the shape of the lowest Bloch band. (c) Acceleration in a lattice with $d = 1.56 \ \mu\text{m}$, $U_0 \approx 1.38E_{\text{B}}$, and $a = 0.94 \ \text{m s}^{-2}$. In this case, the Bloch oscillations are much less pronounced. Dashed and solid lines: theory for $U_0 = 1.38E_{\text{B}}$ and $U_{\text{eff}} \approx 0.88E_{\text{B}}$.

 $V_{\rm eff} = V_0 / (1 + 4C).$

Nonlinear Landau-Zener tunneling

Wu & Niu, PRA 2000

Loop in the band structure

Experiment on Nonlinear LZ tunneling

Adiabatic theorem revisited

PRL 2003,2005 with Liu and Wu

- Linear quantum system
 - Condition: non-degeneracy of levels
 - Probability on each level is conserved
 - Dynamic phase + Berry phase
 - Superposition principle
- Nonlinear quantum system
 - Eigenstate: stationary point
 - General state: periodic, quasiperiodic, or chaotic orbits
 - Conservation of `classical action' or AA phase
 - Concept of Berry phase is also generalized
 - Adiabatic condition: dynamical stability

Stability of BEC states

• Perturbation in the wave function

 $\psi = \psi_k + \delta \psi$

• Energy repsonse:

 $E = E_k + \delta E$

Dynamical response :

Bogoliubov spectrum

Stability phase diagram

Experiment I

Experiment II

Experiment III

Period-doubling Instability of Bose-Einstein Condensates Induced in Periodically Translated Optical Lattices

Nathan Gemelke¹, Edina Sarajlic¹, Yannick Bidel¹, Seokchan Hong² and Steven Chu³ ¹Department of Physics, Stanford University, Stanford, CA 94305

Conclusion

- Very interesting quantum phenomena even for non-condensed cold atoms:
 - Bloch oscillations, LZ tunneling, WS ladders
- BEC and interaction lead to much richer behaviors
 Screening, looping spectrum, dynamical instability, …
- More theoretical and experimental studies are needed on transport in strong interaction regime and near Mott transition.