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On the blackboard

If in an isolated quantum system
1) # Vo) where H|W,) = Eq|V,),

then the evolution of an observable A is dictated by
A(t) = ()| Al(1))  where |y(t)) = e~ |yr).

Will a generic A in a generic system thermalize?
A(t) —t— o= A(FEy) = A(T).

But one can always write
At) =) ChLC e Far=BadlA,, o rewriting [¢pr) =) CalWa),

o«

and taking the infinite time average
<A> — Z |Coz|2Aozom

which depends on the initial conditions through C, = (V,|¢;).

Marcos Rigol (UCSC) Isolated quantum systems out of equilibrium August 30, 2007 2/31



Q Introduction
@ Classical vs Quantum thermalization
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Classical statistical mechanics

Generic isolated systems thermalize

Nonlinear evolution (dynamical chaos) drive a system with many particles to
explore ergodically the constant-energy manifold, with precisely the micro-
canonical measure

Not all classical systems thermalize
Integrable systems do not thermalize

Integrability
@ Hamiltonian H(p, ¢) with ¢ = (¢1,--- ,qn) and p = (p1,--- ,pN)

@ N functionally independent constants of the motion in involution
I=(Ii,,In), {lo,H}=0, {la,Ig}=0

In between there is the KAM theorem

Under small enough perturbations around an integrable point the system does
not thermalize
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Quantum mechanics

Time evolution is linear
[9(t)) = e |yr)

Integrability: Can we justchange {---} — [--:]?
Then find NV functionally independent operators

fafi] =0, [l ds] =0
No, because operators that commute with A are functionally dependent on it

D
Io =) MNHM?
k=1

Sets of linearly independent conserved guantities for any guantum system
Py, = [W,)(V,|, where H|V,) = E,|V,)
263 with n=1,....D

B. Sutherland, Beautiful Models
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Q Introduction

@ Experiments and numerical simulations
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Absence of thermalization in 1D

T. Kinoshita, T. Wenger, and D. S. Weiss,
Nature 440, 900 (2006).
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Absence of thermalization in 1D

Fin:+: Interaction energy

Fin: Kinetic energy

If v < 1 the system is in the
weakly interacting regime

amma=1.4
05} 7 .

04F

If v > 1 the system is in the
strongly correlated
Tonks-Girardeau regime

03
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Dynamics of the 1D Bose-Hubbard model

Bose-Hubbard Hamiltonian -
H=-J Z(bjbi+1 +he)+ o Zn(n —1)

C. Kollath, A. Lauchli, and E. Altman, PRL 98, 180601 (2007).
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Dynamics of strongly correlated fermions in 1D

Spinless fermions Hamiltonian
H = —tz (C;Jrlcj + h.c.) + Vz:njfanrl + Vs annj+2
j j j

S. R. Manmana, S. Wessel, R. M. Noack, and A. Muramatsu, PRL 98, 210405 (2007).
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=05 |

(

V=2V,=04
0.25
V=05 =%
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e Non-equilibrium dynamics in a two-dimensional system
@ Time evolution vs exact time average
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Relaxation dynamics of hard-core boson in 2D

Hard-core boson Hamiltonian
ﬁ — —JZ (8183 + hC) +U Z ﬁiﬁj, 812 = bf =0
(1,7) (1,)
MR, V. Dunjko, and M. Olshanii, arXiv:0708.1324 (2007).

Nonequilibrium dynamics in 2D

N\ R I
O )
g Weak n.n. U =0.1.J

N, = 5 bosons

A
\S
A

()
/
()
/
()
/

/////

O
O
O—CO-=-0O

O—O
O

N = 21 lattice sites

Initial Hilbert space: D = 20349
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All states are used!
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Relaxation dynamics of hard-core boson in 2D

Hard-core boson Hamiltonian
H=-7% (8283. n h.c.) +UY tuny, B =B =0
(i,) (4,)
MR, V. Dunjko, and M. Olshanii, arXiv:0708.1324 (2007).

Nonequilibrium dynamics in 2D

Time evolution of n(k,)
. T .

T T
time average -+----

B=000 —— Weak n.n. U =0.1J
N, = 5 bosons

N = 21 lattice sites

n(k,)

Hilbert space: D = 20349

All states are used!

0.5

kJ2m/(L, d)]
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Relaxation dynamics of hard-core boson in 2D

Hard-core boson Hamiltonian
H=-7% (8283. n h.c.) +UY tuny, B =B =0
(i,) (4,)
MR, V. Dunjko, and M. Olshanii, arXiv:0708.1324 (2007).

Nonequilibrium dynamics in 2D

Weak n.n. U =0.1J
N, = 5 bosons

N = 21 lattice sites

Hilbert space: D = 20349

relaxation dynamics
12 L — — — timeaverage

. All states are used!
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tJ
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e Non-equilibrium dynamics in a two-dimensional system

@ Statistical description after relaxation
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Statistical description after relaxation

Canonical calculation
A="Tr {flﬁ}
6= Z texp (—ﬂ/kBT)

Z =Tr {exp (—ﬁ/kBT)}

Microcanonical calculation
1

Nstates

A =

Y (ol AW,

with Fg — AE < E, < Ey + AFE
Ngtates © H# Of statesin the window
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e Non-equilibrium dynamics in a two-dimensional system

@ Eigenstate thermalization hypothesis
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Eigenstate thermalization hypothesis

Paradox?
Z |Oa|2Aaa — <A>microcan.(E0)

Left hand side: Depends on the initial conditions through C,, = (W, |v1)
Right hand side: Depends only on the initial energy

Eigenstate thermalization hypothesis (ETH)
M. Srednicki, PRE 50, 888 (1994).

The expectation value (V,|A|V,) of a few-body observable Ain an
eigenstate of the Hamiltonian |V, ), with energy E,, of a large in-

teracting many-body system equals the thermal average of A at the
mean energy FL.,:

<wa |A|\Ua> — <A>microcan. (Ea)
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Statistical description after relaxation

2 I T T
Momentum distribution Lo
Eigenstates a — d are the ones <
. . ——— time average/microcan.
with energies closest to Ej 1F — — cigenstatea
— — — eigenstate b
- — . = eigenstatec
----- eigenstate d
05 ' - : - '
3 | | | | kX[ZTC/LXa]
S 2f
[ e n(k, = 0) vs energy
=
o : : : : |, p(E) = P(E) x dens. stat.
— p(B)ead oy P(E)eacact — |Ca|2
----- p(E) microcan. -
- — — p(E) canonical 1 @ P(E)mic. — constant
_______________ = P(E)can. — €Xp (_E/kBT)
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One-dimensional integrable case

Similar experiment in one dimension

Initial

06F ' ' ' ' ' ' ' =

Time average vs Stat. Mech. o4}

o
.. k<4
No thermalization! ,
02| —— time average _
— — - microcan.
- =— -+ canonical
0 L | L | L |
-10 -5 5 10

0
k [2r/L a]

Marcos Rigol (UCSC) Isolated quantum systems out of equilibrium August 30, 2007 18/31



One-dimensional integrable case

06 F ' ' S ' ' :
| \
/ \
~ "\
. ATTETN
Momentum distribution 0a) : v 1
Eigenstates a — d are the ones £
with energies closest to £y 02} |
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— — eigenstated
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=< o5)

p(E) = P(E) x dens. stat.

N . ggﬁfiﬁm 41 7 P(E)ezact — |CO‘|2
— — p(E) canonical - . = P(E)mzc — constant
_ i 105
s A . P(E)can. — €Xp (_E/kBT)
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Integrable vs Nonintegrable cases

Correlations between n(k) and C,

1D (integrable) case 2D (nonintegrable) case

08— ———————F T 810" 27— 810"

eigenstate )
— — — microcan. | —— eigenstate 1

— — - microcan.

Conservation laws play an impor- Correlations are not relevant, and
tant role in integrable models they are not present!
(Talk later today by Anibal lucci).
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e Non-equilibrium dynamics in a two-dimensional system

@ Time fluctuations
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Relaxation dynamics of hard-core boson in 2D

Hard-core boson Hamiltonian
H=-7% (8283. n h.c.) +UY tuny, B =B =0
(i,) (4,)
MR, V. Dunjko, and M. Olshanii, arXiv:0708.1324 (2007).

Nonequilibrium dynamics in 2D

Weak n.n. U =0.1J
N, = 5 bosons

N = 21 lattice sites

Hilbert space: D = 20349

relaxation dynamics
12 L — — — timeaverage

. All states are used!

0 50 100 150 200
tJ
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Time fluctuations

Are they small because of dephasing?

o Eor —Ea)t

(At)) — (A@t)) = ) CrC P BelAy g~ - N Aara
o' £a o' £a
V N sztates Agﬂifal N Angal
Ngtates

Time average of (A)

<A> — Z |Coz|2Aocoz

1 .
-~ E : Aaa ~ Atyplcal
Nstates o
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e Integrable systems
@ Generalized Gibbs ensemble
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Relaxation dynamics

HCB Hamiltonian

H=-tY (b}biﬂ n h.c.) , =2 =0

MR and A. Muramatsu, PRL 93, 230404 (2004); PRL 94, 240403 (2005).

Density profile Momentum profile
T T T T T T T 0.4 | | |
0 — 0 —
0.2 W 5
03 5
< 02 -
0.1 5
0.1 5
0 1 ] ] ] ] O |
=300 -150 0 150 300 -7 —/2 0 /2 s
x/a ka

MR, V. Dunjko, V. Yurovsky, and M. Olshanii, PRL 98, 050405 (2007).
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Statistical description after relaxation

Thermal equilibrium

15
p= 2 texp [— (ﬁ—uNb) /kBT} °
7 =Tefow |- (B—ul) rot]}
E=Tr {ﬁﬁ} N, =T {Nbﬁ} >

Evolution of nx—g

4Tirﬁeevb|utibn |
- Thermal

A A

1000

n; after relaxation

T

— After relax. (Nb: 36)
— After relax. (N =15)
— Thermal (N_=30) I."\

-~ Thermal (N =15); i

MR, PRA 72, 063607 (2005). 0
Constrained equilibrium 05
Pe =2 texp |- Z)\mfm =
- x 0.25]
Z.=Tr {exp — Z A Lo }
<fm>7-_0 = Tr {fmﬁc} O_n
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Statistical description after relaxation

Thermal equilibrium

Evolution of nx—g

1. ‘ ‘ ‘ ‘ ‘
A n ° - phme evlol ution
p=2Zlexp {— (H — uNb) /kBT} | - Conarained
A A Cx
Z =Tr {exp [— (H — ,LLNb) /kBT}}
A ~ 0.5] ]
b=Tr {Hﬁ} , Np=Tr {Nb,ﬁ} A e
MR, PRA 72, 063607 (2005). 0o 1000 2000 3000 4000
i
Constrained equilibrium L after relaxation
[ ] — After relaxation
> — > ~ | - Thermal
pe=Ze 1exp - Z)‘mlm < ’--Co%rstrrgined N
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Statistical description after relaxation

Integrals of motion

(underlying noninteracting fermions) Lagrange multipliers

N\

oA A 1— (1) —
Hr34110) = EnA(0) Ao = In | 1= klr=0
{8} = {58144}

e=k endin,
TRL 97, 156403 (2006) FPHYSICAL REVIEW LETTERS 13E)NCTOBER%,CC6

Effect of Suddenly Turning on Interactions in the Luttinger Model

M. A, Cazalilla
Donoska Ingemational Physicy Center (DIPC), Manuwel de Lardigabal 4, 20018-Denosta, Span
{Received 19 Tupe 2006, publizhed 12 October 2006)

The evoluticn of correl ations in the exacely zolvable Luttinger model (2 model of imteracting fermicns
in one dimension) after a suddenly awitched-on interaction iz anabrically studied When the model i
defined on a finte-mize ring, zemo-temperature correlations are periodic in time. However, in the
thermodynamic limit, the ayatern rel azes alzebrasically tosrards a stationary state which is well desenbed,
at least for zome zimple corel ston functionsz, by the generalized Gibbe enzemble recently introduced by
Rigol e al (cond-mat/0604476). The efitical exponent that characterizes the decay of the cne-particle
correlation function 1= different from the known equilibrium exponems. Bzpefiments for which these
rezultz can be relevant are dlzo dizcuszed.

DOL: 101105 PhysRevLatt 7. 158403 PACS mmbes: T110Pm, 02.5300:, 03.75.5, 05.70Ln

P. Calabrese and J. Cardy, J. Stat. Mech. 0706, PO08 (2007).
M. Eckstein and M. Kollar, arXiv:0707.2789.
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@ Statistical mechanics works for
generic isolated systems
% Finite size effects

@ Eigenstate thermalization hypothesis
(ETH)
* <wa’A’wa> — <A>microcan.(Ea)

@ Time plays only an auxiliary role

@ Integrable systems are different
(ETH does not hold!)

@ Small time fluctuations < smallness of
off-diagonal elements

thermal

dephasing

coherence

EIGENSTATE THERMALIZATION

thermal
S :
O,
<
~_as Ep thermal X Thermal state
» S /‘\\\ s
o
N
()
E

Initial state

28 /31
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Open questions

@ What happens when one moves away from an integrable
point?

@ Is there a quantum equivalent of the KAM theorem?
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Collaborators

@ Vanja Dunjko (U Mass Boston)

@ Maxim Olshanii (U Mass Boston)
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Looking for a postdoc?

@ Solve the exercises and send me an email. We may be
starting together at Georgetown University (Washington,
DC) in September 2008!
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Looking for a postdoc?

@ Solve the exercises and send me an email. We may be
starting together at Georgetown University (Washington,
DC) in September 2008!

Looking for a postdoc right away?

@ Send an email to Corinna Kollath. You may be joining Ecole
Polytechnique (Paris) as early as December 2007!
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