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Introduction:

The concept of quenched disorder
Examples (Anderson localization (AL), disordered Bose-Hubbard model,
random field Ising model (RFIM), spin glasses (SG))
Four ways of creating controlled disorder in ultracold atomic gases 

Anderson localization (single particles):
Weak localization and coherent backscattering
Localisation in 1D
Scaling theory of the “gang of four”. 

Anderson localization and disordered weakly interacting  Bose gases
Bose-Anderson glass
Trapped gases and the concept of Lifshits glass 

Random field spin models
Imry-Ma argument
Random field induced order



The concept of quenched disorder

ii) They (ergo, also their distribution) remain “frozen” on the
time scale of observation of the system (quenched disorder).

Very often one considers systems described by a Hamiltonian
that depends on a set of parameters µi such that:

i) They have “random” or “quasi-random” character
(i.e. can be well approximated as a sample of random
variables drawn according to some distribution)

iii) Thus, we have to solve the problem for a given realisation of
disorder, and then average observables  over the disorder: 

disorderiO µ(



Examples of quenched disorder
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• Single particle in a random potential (Anderson
localization, εi – i.e.d.r.v., p(εi) given) 
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• Disordered Bose-Hubbard model



Examples of quenched disorder

• Spin glass (Edwards-Anderson model)
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• Random field Ising model (RFIM)
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Some “truths” about disordered systems

Disordered systems often have very many „relevant“ states
(energy minima, attractors, excitations, etc.) 

Disordered systems are characterized by structurally simple, 
but non-linear interactions, that incorporate quenched disorder

Disordered systems exhibit often long range correlations
in space and time (in particular when interactions themselves are
long range)

Disordered system often incorporate fractal structures,
hierarchical or ultrametric structures

Quantum disordered systems are notoriously (i.e. much
than non-disordered ones) difficult to simulate !



Disordered ultracold quantum gases

• Using optical super-lattices:

• Quenching auxiliary atoms as random scatterers:

• Four ways to create random (but controlled) on-site potential

• Add a disordered lattice(s) created by speckle radiation pattern            
to the main lattice (in traps PRL’s by Florence, Orsay, Hannover…)

• Add a lattice(s) with incommensurable period (quasi-disorder)
– papers by us, Roth and Burnett, see also T. Schulte et al. PRL. 95, 170411 (2005)

• Place auxiliary atoms in a lattice and ramp potential wells up non-
adiabatically. For small filling factors, the atoms will be localized at 
random positions. Super-impose this system of random scatterers
with the main lattice – see recent papers of  Y. Castin group

• Employing Feschbach resonances in random magnetic fields:
• Disordered interactions - see H. Gimperlein et al., cond-mat/0506572

+ Frustarted non-radom!!!



speckle pattern

quasiperiodic potential

smaller length scale (1 µm or less)

random potential

large length scale in our set-up (several µm)
Note, however A. Aspect’s group has < 1µm !

bichromatic lattice

Approach of M. Inguscio et consortes to controlled disordered optical 
potential

Non-periodic modulation of the energy minima 
with length scaleJ.E.Lye et al. PRL 95, 070401 (2005)

C. Fort et al. PRL 95, 170410 (2005)



Quantum Control in Superlattice and Disordered
Potentials (Here Mainz, but also NIST, Innsbruck...)
Goals: 
1) Generate controllable disordered quantum systems, for quantum simulations
of disordered many body systems! 

2) Employ quantum parallelism in experiment and theory to efficiently simulate
them (see e.g. B. Paredes, F. Verstraete & I. Cirac, PRL 95, 140501 (2005))

Experimental realizations:

1) Superlattice potentials for controlled
„disorder“

2) Disorder via second atomic species

Feshbach resonanceSuperlattice depth and phase
controllable (nonrational

wavelength factors possible)



Anderson localization
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• Single particle in a random potential undergoes random
scattering events, so that destructive interference
counteracts transport

• Weak localization – Coherent back scattering



Anderson localization in 1D
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• If εi = εi+q, the problem is periodic, and the eigenstates
are Bloch waves, and the spectrum has bands+gaps

• For arbitrarily small random εi, all eigenstates are
exponentially localized! For |ν-j| →∞, we have (where
the localization length l=l(ε)):

)/||exp( lju j −−→ νν



Furstenberg theorem

( ) 0/...lnlim 11 >=−∞→ γqMMMTr qqq

• Let Mq, q=1,2,… is a set of unimodular matrices
(det Mq=1). Under very general conditions

• In our case
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Furstenberg theorem
• In our case
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• with lnTr[Mm(ε)]/m → γ (Lyapunov exponent). 
Thus, Mm(ε) has an eigenvalues exp(+γm) and exp(-γm). 
Generically, choosing u1/u0, we can always assure
um→0 exponentially either for m→+∞, or for m→-∞.
Choosing appropriate discrete ε we assure that (with
l=1/γ)

)/||exp( lmum −−→ νν



Anderson localization – scaling theory
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• We define a generalized dimensionless “conductance”
(Thouless number, sensitivitiy to boundary conditions, 
superfluid fraction, …) at the scale L

• where ∆E(L) is the square root of the disorder averaged
squared difference of energy levels caused by replacement of
periodic by antiperiodic boundary conditions, 
and dE/dN is the mean level spacing. The function g(L)
is the only relevant quantity when two large cubes of size L
are fitted together. 

“Gang of four”: E. Abrahams, P.W. Anderson, D.C. Licciardello, and T.V. Ramakrishnan,
PRL 42, 673(1979) 



Anderson localization – scaling theory
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• We consider combining bd cubes into one block of size bL. We
postulate:

• For large g (no disorder), we get
g(L)→Ld-2, i.e. lim g →∞ β(g)=d-2. 
For small g (disorder dominant), 
we expect exponential localization, 
g=gae -γL, i.e. lim g →∞ β(g)=ln[g/ga].



Routes toward Anderson localization: interplay 
between disorder and interactions in trapped gases

Experiment by T. Schulte et al.
- speckles too “large”
- interactions too “strong”

Theory by T. Schulte et al.
- “quasidisorder”

But, observe  11th Commandement: 
You shall not block, or obscure the laser access



The quest for Anderson localisation
in BEC: Experiments

• Experiments in Orsay/Palaiseau:
• A. Aspect has speckles with submicron correlation length!!!
• Plans to see signatures of AL in expansion and excitations
• Problem: Moving of the labs

• Experiments at LENS:
• M. Inguscio has  BEC of Potassium 39
• Plans to see signatures of AL in “ideal” gas

- Feshbach resonances on different Rb/K mixtures and K samples: realization of 39K 
Bose-Einstein condensate with tunable interactions

39K condensate at various magnetic fields in the vicinity of a Feshbach resonance. The size shrinks as the 
scattering length a is decreased, and the condensate eventually collapses for negative a.

G. Roati et al. airXiv:cond-mat/0703714v1
M. Zaccanti et al. PRA 74, 041605R (2006)



The quest for Anderson localisation
in BEC: Theory I 

• Progress in understanding of the interplay disorder-interactions:

•Progress in understanding of localization effects in expansion and in excitations
• N. Bilas, N. Pavloff, G. Shlyapnikov, L. Sanchez-Palencia



The quest for Anderson localisation
in BEC: Theory II 

• Progress in understanding of the interplay disoreder-interactions:

Lifshits glass



Let us now turn to lattices, but before talkin´ about
disorder, let us define remind us about possible orders
in an optical lattice with atoms loaded on it.

First band

Tunneling On site interactions

Bose-Hubbard model
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Bose gas in an optical lattice
Idea: D. Jaksch, C. Bruder, J.I. Cirac, C.W. Gardiner and P. Zoller

By courtesy of M. Greiner, I. Bloch, O. Mandel, and T. Hänsch

Superfluid Mott insulator



Anderson localization versus repulsive interactions
• Renormalization group analysis based on bosonization approach

in homogeneous systems (T. Giamarchi and H.J. Schulz, PRB 37, 
326 (1988) shows that in 1D arbitrarily small disorder localizes
(Anderson-Bose glass for bosons), as well as an arbitrarily weak
periodic potential (lattice, Mott insulator) – see the wonderfull
book of Thierry Giamarchi and refs. therein.

• In higher d we expect competition between
superfluid (SF), Mott
insulator (MI), and Bose glass (BG)

(see the seminal work of M.P.A. Fisher et al. 
PRB 40, 546 (1989).



Creating Anderson glass in a disordered  optical lattice

Description: 

i) Bose-Hubbard model with random on-site energies
ii) negligible on-site interactions
iii) „boost“ method to calculate the SF fraction
iv) localization of the condensate wave functions

H= - Σ<ij> (Jb†
ibj +h.c.)

+ Σihib†
ibi + ΣiUni(ni-1)/2 

B. Damski, J. Zakrzewski, 
L.Santos, P. Zoller, 
and M. Lewenstein,

Phys. Rev. Lett. 91, 080403 (2003)



Bose glass in a disordered optical lattice

Description: 

i) time-dependent Bose-Hubbard model with random on-site energies
ii) growth of the disorder
iii) „boost“ method to calculate the SF fraction
iv) rapid decrease of the SF and the condensate fraction

H= - Σ<ij> (J(t)b†
ibj +h.c.)

+ Σihi(t)b†
ibi + ΣiU(t)ni(ni-1)/2



hopping energy interaction energy

J U
disorder

∆

The phase of the system depends on the interplay between these energy terms 

Bose-Hubbard model with bounded disorder in the external potential

interacting bosons in a disordered optical potential (experiments)

ε j ∈ −∆ / 2,+∆ / 2[ ]



When the amplitude ∆ of the disorder is 
big enough to fill the energy gap of the 
Mott insulator a new quantum phase 
appears: the Bose Glass

(R. Roth and K. Burnett, PRA 68, 023604 (2003))
Phase diagram of 1D – homogeneous system

interacting bosons in a disordered optical potential

hopping energy interaction energy

J U
disorder

∆

BOSE-GLASS PHASE (BG)

• No phase coherence
• Low number fluctuations
1. No gap in the excitation spectrum
2. Vanishing superfluid fraction
3. Finite compressibility

MOTT INSULATOR PHASE (MI)

• No phase coherence
• Zero number fluctuations
1. Gap in the excitation spectrum
2. Vanishing superfluid fraction
3. Vanishing compressibility



Experimental configuration:1D system and 1D disorder
1D atomic systems + two colours along the tubes

λ1 = 830 nm  s1 = 40
Jy/h = Jz/h = 0.4 Hz

Along y,z

λ1 = 830 nm  s1 < 20
λ2 = 1076 nm  s2 < 3

Along x

strongly interacting bosons in a bichromatic optical lattice

Observables:
Excitation spectrum (modulation of the lattice λ1)

Phase Coherence (density profile after expansion)



Random field spin models – Imry-Ma argument

• Do they magnetize spontaneously? Look at energies of
domain (Ising), or Bloch (Heisenberg, XY) walls:

• Ising model Edw ~ Ld-1

Ld-1

L

• Heisenberg, or XY model EBw ~ Ld-1·L·π2/L2 ~ Ld-2·, 
since cos(si,sj)=cos(φij), where φij= π/L



Random field spin models – Imry-Ma argument

• Ergo,   Ising model sensitive to boundaries for d>1; 
models with continuous symmetry sensitive for d>2
(no long range order for d≤2, Mermin-Wagner theorem)

• Random field ERF ~ hLd/2 (<<hi>>=0, <<hi
2>>=h2)

d>4d>2Cont. Symm.

d>2d>1Ising

m>0, 0≤T<Tcm>0, 0≤T<Tc

random fieldpure



Disorder (random field) induced order 

in ultracold gases



Disorder induced order –
Breaking continuous symmetry with disorder

Ongoing polemics:
I.A. Fomin – G.E. Volovik
on 3He-A in aerogel



Disorder induced order –
Breaking continuous symmetry with disorder

We study two-component BEC coupled
by random real Raman coupling



• There are more thing in heaven and earth,
Horatio, than are dreamt of in your philosophy.

CONCLUSIONS (The Tragedy of Hamlet,  by Shakespeare):

Wow!!!
• See: Ultracold atoms in optical lattices: Mimicking condensed matter

and beyond, M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski,
A. Sen (De) and U. Sen, 130 p., over 800 refs., cond-mat/06006771




