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= Introduction:

v" The concept of quenched disorder

v Examples (Anderson localization (AL), disordered Bose-Hubbard model,
random field Ising model (RFIM), spin glasses (SG))
v" Four ways of creating controlled disorder in ultracold atomic gases

* Anderson localization (single particles):

v" Weak localization and coherent backscattering
v" Localisation in 1D
v Scaling theory of the “gang of four”.

" Anderson localization and disordered weakly interacting Bose gases

v' Bose-Anderson glass
v" Trapped gases and the concept of Lifshits glass

= Random field spin models

v Imry-Ma argument
v'Random field induced order



The concept of quenched disorder

Very often one considers systems described by a Hamiltonian
that depends on a set of parameters p, such that:

1) They have “random” or “quasi-random” character

(1.e. can be well approximated as a sample of random

variables drawn according to some distribution)

11) They (ergo, also their distribution) remain  “frozen” on the
time scale of observation of the system (quenched disorder).

111) Thus, we have to solve the problem for a given realisation of
disorder, and then average observables over the disorder:

<<O(,u | >>disorder



Examples of quenched disorder

* Single particle in a random potential (Anderson
localization, g —1i.e.d.r.v., p(g;) given)

e (i) ==t(PA-1)+P>i+1)-2%(i))-&¥()
H =Y (bjb+b'b,)- Y b, + 21N

(ij)
e Disordered Bose-Hubbard model

H= —JZ&Z-L&J; + %an (7; — 1) +Z€jﬁj
(i,4) ¢




Examples of quenched disorder

 Random field Ising model (RFIM)

H=-J) s/s’ Zhs

1))

* Spin glass (Edwards-Anderson model)

H=->» J;s's; Zhs

1y)



Some “truths” about disordered systems

" Disordered systems are characterized by structurally simple,
but non-linear interactions, that incorporate quenched disorder

" Disordered systems often have very many .relevant” states
(energy minima, attractors, excitations, etc.)

" Disordered systems exhibit often long range correlations
in space and time (in particular when interactions themselves are
long range)

" Disordered system often incorporate fractal structures,
hierarchical or ultrametric structures

" Quantum disordered systems are notoriously (i.e. much
than non-disordered ones) difficult to simulate !
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* Four ways to create random (but controlled) on-site potential

« Using optical super-lattices:
* Add a disordered lattice(s) created by speckle radiation pattern
to the main lattice (in traps PRL’s by Florence, Orsay, Hannover...)
e Add a lattice(s) with incommensurable period (quasi-disorder)

— papers by us, Roth and Burnett, see also T. Schulte et al. PRL. 95, 170411 (2005)
* Quenching auxiliary atoms as random scatterers:

* Place auxiliary atoms 1n a lattice and ramp potential wells up non-
adiabatically. For small filling factors, the atoms will be localized at
random positions. Super-impose this system of random scatterers
with the main lattice — see recent papers of Y. Castin group

 Employing Feschbach resonances in random magnetic fields:
e Disordered interactions - see H. Gimperlein et al., cond-mat/0506572

+ Frustarted non-radom!!!



Approach of M. Inguscio et consortes to controlled disordered optical
potential

speckle pattern bichromatic lattice

v/ random potential v/ quasiperiodic potential

X large length scale in our set-up (several um) v/ smaller length scale (1 pm or less)
Note, however A. Aspect’s group has < 1um !

Non-periodic modulation of the energy minima
J.E.Lye et al. PRL 95, 070401 (2005) with length scale

C. Fort et al. PRL 95, 170410 (2005) o 5 —1
a= (A—l - /\—)



Quantum Control in Superlattice and Disordered
Potentials (Here Mainz, but also NIST, Innsbruck...)

]

Goals:
1) Generate controllable disordered quantum systems, for quantum simulations
of disordered many body systems!

2) Employ quantum parallelism in experiment and theory to efficiently simulate
them (see e.g. B. Paredes, F. Verstraete & I. Cirac, PRL 95, 140501 (2005))
Experimental realizations:

1) Superlattice potentials for controlled 2) Disorder via second atomic species
,.adisorder

Superlattice depth and phase Feshbach resonance
controllable (nonrational

wavelength factors possible)

[0=|1=|0>]1>|0>[1=]0> |1




Anderson localization

* Single particle in a random potential undergoes random
scattering events, so that destructive interference
counteracts transport

—& W(i) =t P(j)-&¥ (i)

j,nn

* Weak localization — Coherent back scattering




Anderson localization in 1D

* It = g;,,, the problem is periodic, and the eigenstates
are Bloch waves, and the spectrum has bands+gaps

su() =tud+D+u(@-1))+¢&u()

* For arbitrarily small random g, all eigenstates are

exponentially localized! For |v-j| — oo, we have (where
the localization length 1=I(¢g)):

u; = exp(—|v—JI[/1)



Furstenberg theorem

* Let Mq, q=1,2.... is a set of unimodular matrices
(det M =1). Under very general conditions

lim, ,, InTr(M M, ..M, }/q=y>0

e In our case

(umﬂjz((g—gm)/t —1]( U, ]zl\/lm(
u. 1 1 AU,



Kurstenberg theorem

 In our case

um+1 ul ul
u U, U,

m

 with InTr[M_(g)]/m — y (Lyapunov exponent).
Thus, M_(€) has an eigenvalues exp(+ym) and exp(-ym).
Generically, choosing u,/u,, we can always assure
u_—0 exponentially either for m—+oco, or for m—-co.
Choosing appropriate discrete € we assure that (with
1=1/y)

u, > exp(—|v—ml/l)



Anderson localization — scaling theory

“Gang of four”: E. Abrahams, P.W. Anderson, D.C. Licciardello, and T.V. Ramakrishnan,
PRL 42, 673(1979)

* We define a generalized dimensionless “conductance”

(Thouless number, sensitivitiy to boundary conditions,
superfluid fraction, ...) at the scale L

AE(L
gLy =)
dE(L)/dN
 where AE(L) is the square root of the disorder averaged

squared difference of energy levels caused by replacement of
periodic by antiperiodic boundary conditions,

and dE/dN is the mean level spacing. The function g(L)

is the only relevant quantity when two large cubes of size L
are fitted together.




Anderson localization — scaling theory

* We consider combining b? cubes into one block of size bL. We

postulate:

g(bL) = 1(b,g(L)), or
ding(L)/dL = £(g(L))
 For large g (no disorder), we get

g(L)—L%%, ie. lim , , B(g)=d-2.
For small g (disorder dominant),

we expect exponential localization,
g=g,e "l i.e. lim, _ P(g)=In[g/g,].

FIG. 1. Plotofplg) va lng ford>2, d=2, d<2, g(L)
is the normalized “local conductance,” The approxima-
tion g =s In{g/g.) 1= shown for g> 2 as the solid-circled
line; this unphysical behavior necessary for a condue-
tance jump ind =2 is shown dashed,



Routes toward Anderson localization: interplay
between disorder and interactions in trapped gases

Experiment by T. Schulte et al.
- speckles too “large”
- interactions too “strong”

)J .. \x . e I
\ A~ j \ v
-400 0 400 -400 0 400
x [m] X [um]

Theory by T. Schulte et al.
- “quasidisorder”

atomic density

But, observe 11th Commandement:
You shall not block, or obscure the laser access



The quest for Anderson localisation
in BEC: Experiments

* Experiments in Orsay/Palaiseau:
* A. Aspect has speckles with submicron correlation length!!!
* Plans to see signatures of AL in expansion and excitations
* Problem: Moving of the labs

* Experiments at LENS:
* M. Inguscio has BEC of Potassium 39
* Plans to see signatures of AL in “ideal” gas

- Feshbach resonances on different Rb/K mixtures and K samples: realization of 3K
Bose-Einstein condensate with tunable interactions

: G. Roati et al. airXiv:cond-mat/0703714v1
i e e 9w N M. Zaccanti et al. PRA 74, 041605R (2006)

3493 G 3500G /026G 3527G 3/47G 0 3617G 3952IG

YK condensate at various magnetic fields in the vicinity of a Feshbach resonance. The size shrinks as the
scattering length a is decreased, and the condensate eventually collapses for negative a.



The quest for Anderson localisation
in BEC: Theory I

* Progress in understanding of the interplay disorder-interactions:

7 k endi
PRL 98, 170403 (2007) PHYSICAL REVIEW LETTERS 27 APRIL 2007

Ultracold Bose Gases in 1D Disorder: From Lifshits GGlass to Bose-Einstein Condensate

B Lugan,l D. Clément," P. Bouyer,l AL Aspect,l M. Lewenstein.” and L. Sanchez-Palencia’
'Laboratoire Charles Fabry de I'Institut d’Optigue, CNRS and Univ. Paris-Sud, Campus Polytechnigue,
RD 128, F-07127 Palaiseau cedex, France

“ICREA and ICFO-Institut de Ciéncies Fotomiques, Parc Mediterrani de la Tecnologia, E-08860 Castelidefels (Barcelona), Spain
iReceived 15 October 2006:; published 27 April 2007)

We study an ultracold Bese gas in the presence of 1D disorder for repulsive interatomic interactions
varying from zero to the Thomas-Fermi regime. We show that for weak interactions the Bose gas
populates a finite number of localized single-particle Lifshits states, while for strong interactions a
delocalized disordered Bose-Einstein condensate is formed. We discuss the schematic quantum-state
diagram and derive the equations of state for various regimes.

*Progress in understanding of localization effects in expansion and in excitations

* N. Bilas, N. Pavloff, G. Shlyapnikov, L. Sanchez-Palencia



The quest for Anderson localisation
in BEC: Theory 11

* Progress in understanding of the interplay disoreder-interactions:

FIG. | icolor online). Schematic quantum-state diagram of an
interacting ultracold Bose gas in 1D disorder. The dashed lines
represent the boundaries (corresponding to crossovers) which are
controlled by the parameter g = b /2mogVg (fxed in the
figure, see text). where Vg and op are the amplitude and
correlation length of the random potential. The hatched part
corresponds to a forbidden zone (g < V).
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FIG. 2 {coler online).  {a) Cumulative density of states of single
particles in a speckle potential with oy = 2 * 107°L and Vg =
WHE,, where Ey = h*/2mlL* (V,,, = — V). Inset: Participation
length [25]. (b} Low-energy Lifshits eigenstates. For the consid-
ered realization of disorder, ey = —5 ¥ 10°P E,.

[y = l_[f.!h’p!J“f’?f.r‘JIJ"‘r"Iva-:},

¥ =)

where b} is the creation operator in the state ¢ (ply ..z



Let us now turn to lattices, but before talkin® about
disorder, let us define remind us about possible orders
in an optical lattice with atoms loaded on it.

First band

1 Tunneling [l On site interactions

Bose-Hubbard model

—UZ n. (N, —1)——J D b+b +he+uy n,
2 27 s b



Bose gas in an optical lattice
Idea: D. Jaksch, C. Bruder, J.I. Cirac, C.W. Gardiner and P. Zoller

Superfluid Mott insulator
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Anderson localization versus repulsive interactions

* Renormalization group analysis based on bosonization approach
in homogeneous systems (T. Giamarchi and H.J. Schulz, PRB 37,
326 (1988) shows that in 1D arbitrarily small disorder localizes
(Anderson-Bose glass for bosons), as well as an arbitrarily weak
periodic potential (lattice, Mott insulator) — see the wonderfull
book of Thierry Giamarchi and refs. therein.

e In higher d we expect competition between
superfluid (SF), Mott

insulator (MI), and Bose glass (BG)
(see the seminal work of M.P.A. Fisher et al.

piv
PRB 40, 546 (1989). FIV (C} 3 {N>»=3
| / MI _[_'_
BG N=3
I=Asv & 2 ez
ur i ) N
FaYAY ! f‘/-;‘\ 4 rl
o 17 IV :'u' '\:J%a;c
—AN m_ o Il \
Je/V IV

FIG. 2. Possible zero-temperature phase diagrams for the ) .
lattice boson model (2.1) with weak bounded disorder, A/V < L. FIG. 1. Zero-temperature phase diagram for the lattice mod-

. . . el of interacting bosons, (2.1), in the absence of disorder. For an
Figure 2(a), where the transition to superfluidity occurs only integer number of bosons per site the superfiuid phase (SF) is

from the insulating, gapless Bosc glass phasc (BG), is argued in unstable to a Mott insulating (MI) phase at small J /V.
the text to be the correct phase diagram.



Creating Anderson glass in a disordered optical lattice
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Description:

i) Bose-Hubbard model with random on-site energies
) 5 B. Damski, J. Zakrzewski,

i) negligible on-site interactions
iii) ,,boost“ method to calculate the SF fraction L.Santos, P. ZOlle.r,
iv) localization of the condensate wave functions and M. Lewenstein,

Phys. Rev. Lett. 91, 080403 (2003)



Bose glass in a disordered optical lattice

H=- 3. (J(O)b'hb th.c.)
+ Z;hy(H)bTb; + Z,U(t)n;(n;-1)/2

Description:

0.3

0.2

condensate fraction

-
""—-—-—

| | 1
0.01 0.02 |
time/[s]

i) time-dependent Bose-Hubbard model with random on-site energies

i) growth of the disorder

iii) ,,boost“ method to calculate the SF fraction
iv) rapid decrease of the SF and the condensate fraction



Interacting bosons in a disordered optical potential (experiments)

Bose-Hubbard model with bounded disorder in the external potential

g e|-A/2,+A/2]

The phase of the system depends on the interplay between these energy terms

hopping energy interaction energy disorder

J U A




Interacting bosons in a disordered optical potential

Phase diagram of 1D — homogeneous system
(R. Roth and K. Burnett, PRA 68, 023604 (2003))

When the amplitude A of the disorder is
big enough to fill the energy gap of the
Mott insulator a new quantum phase
appears: the Bose Glass

AU =1




strongly interacting bosons in a bichromatic optical lattice

Experimental configuration:1D system and 1D disorder

1D atomic systems + two colours along the tubes

|

Observables:
Excitation spectrum (modulation of the lattice 21)
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Random field spin models — Imry-Ma argument

* Do they magnetize spontaneously? Look at energies of
domain (Ising), or Bloch (Heisenberg, XY) walls:

Ld-l T

* Ising model E, ~ Ld!

« Heisenberg, or XY model Eg  ~ L%!-L-w?/L? ~ L2,
since cos(s;,s;)=cos(®;;), where ¢;= m/L



Random field spin models — Imry-Ma argument

* Ergo, Ising model sensitive to boundaries for d>1;
models with continuous symmetry sensitive for d>2
(no long range order for d<2, Mermin-Wagner theorem)

* Random field Egp~ hL%? (<<h>>=0, <<h>>=h?)

pure random field

m>0, 0<T<T_, |'m>0, 0<T<T,
Ising d>1 d>2
Cont. Symm. d>2 d>4




Disorder (random field) induced order

in ultracold gases



Disorder induced order —
Breaking continuous symmetry with disorder

PHYSICAL REVIEW B 74, 224448 (2006)

Disorder versus the Mermin-Wagner-Hohenberg effect: From classical spin systems  f random Beid
to ultracold atomic gases e
| e ¥ ¥ 4 v t Ll
1. Wehr,'? A. Niederberger,' L. Sanchez-Palencia,” and M. Lewenstein'# L * ¥ toor v -~
UCREA and ICFO-Institu de Ciéncies Fordniques, Parc Mediterrani de la Tecnologia, E-08360 Castelldefels (Barcelona), Spain e * N ‘ N ' ' =2
Department of Mathematics, The University of Arizona, Tucson, Arizona 85721-008% /54 N ; ‘_,Ill'f)u § ; .
Maboratoire Charles Fabry de Ulnstitut d'Optigue, CNRS and Univ. Paris-Sud, campus Polvtechnigue, RD 128, Bl T [
F-91127 Palaiseau cedex, France o ¥ 4 ' 4 ¥ —-
Ynsiinut fiir Theoretische Physik, Universitit Hannover, D-30167 Harnover, Germany | ! " 4 } L } [ spin arientation
(Received 14 April 2006; revised manuscript received 27 October 2006; published 29 December 2006) e v : 4 ' ' +=.~..‘..
We propose a general mechanism of ramdom-field-induced order (RFI0), in which long-range order is L * T t r ' v -
induced by arandom field that breaks the continuous symmetry of the model. We particularly focus on the casa — — —= e e e L= -

of the classical ferromagnetic XY model on a two-dimensicnal lattice, in a uniaxial random field. We prove
rigorously that the system has spontanecus magnetization at temperature T=0, and we present strong evidence ﬁ::;"ﬁ:'l;:;lj
that this is also the case for small 70, We discuss generalizations of this mechanism to various classical and

quantum systems. In addition, we propose possible realizations of the RFIO mechanism, using ultracold atoms

in an optical lattice. Our results shed new light on controversies in existing literature, and open a way to realize

FEFIO with ultracold atomic systems,

-

v ' ' week ending
PRL 98, 156801 (2007) PHYSICAL REVIEW LETTERS 13 APRIL 2007

Randomness-Induced XY Ordering in a Graphene Quantum Hall Ferromagnet

Dimitry A, Abanin, Patrick A. Lee, and Leonid 5. Levitov

Department of Physics, Massachuselts Institute of Techaology, 77 Massachusents Avenue, Cambridge, Massachuseris 02139, USA
{Received 2 Movember 2006, published 10 April 2007)

Walley-polarized quantum Hall states in graphene are described by a Heisenberg O(3) ferromagnet

modal, with the ordering type controlled by the strength and the sign of the valley anisotropy. A Ol’lgOlng pOlemICS'
mechanism resulting from electron coupling to the strain-indoced gauge field, giving a leading contri- . .
bution to the anisotropy, is described in terms of an effective random magnetic field aligned with the I A Fomln — G E VOIOVlk

ferromagnet ¢ axis. We argue that such a random field stabilizes the X¥ ferromagnet state, which is a
coherent equal-weight mixture of the K and K* valley states. The implications such as the Berezinskii- 3 1
Kosterlitz-Thouless ordering transition and topological defects with half-integer charge are discussad. on He A m aerogel



Disorder induced order —
Breaking continuous symmetry with disorder

Disorder-Induced Order in Two-Component Bose-Einstein Condensates

A, Niederberger,! T. Schulte, 22 J. Wehr,1:# M. Lewenstein, 4 L. Sanchez-Palencia,® and K. Sachal:®

We study two-component BEC coupled

by random real Raman coupling

b= fd“[ (B2 2m) [V |2 + V()| P+ (a/2)]in |*

(A (2m) T * +V ()] + (02/2) il

ouafin e ]* + (A(r) /2) (Wiva + vidun)] .

(3)

0.52
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Figure 3. BFIO effect in a 3D two-component BEC trapped
m a spherically svmmetric harmonie trap with trapping
frequency w = 27 = 30Hz., The total nmumber of atoms
is N = 10°, the scattering lengths are the same as in
Fig. 2 with guasi-random Ramsan coupling £3®, w, 2) o
5w [2,y,2) (50 2T AR + ) +sin 2mu/{1L.71AR) + 5] with
Ap = 4.68pm and Kt = 5 » 107 %, The plot shows the
relative phase @ in the plane = = Opm in units of 7.



CONCLUSIONS (The Tragedy of Hamlet, by Shakespeare):

« There are more thing in heaven and earth,
Horatio, than are dreamt of in your philosophy.

Wow!!!

» See: Ultracold atoms in optical lattices: Mimicking condensed matter
and beyond, M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski,
A. Sen (De) and U. Sen, 130 p., over 800 refs., cond-mat/06006771






