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Outline

Nonlinear interference of BEC PRL 00, with Liu and Wu
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Nonlinear Quantum Chaos PRL 04, 05 with Zhang, Liu, Raizen
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Quasi-particle momentum PRL 06 with Zhang

Thermal momentum distribution
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BEC Interference 

• Andrews et al, Science 1997

?fat central peak?
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Basic considerations

• Relative phase is well defined
– two packets are produced coherently from 

one
– relative phase=0 because of symmetry
– Interference pattern repeatable 

• GP equation works
– Numerical solutions by Wallis et al PRA 1997
– The fat central peak remains to be explained
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Inverse scattering method

• 1D GP is exactly soluble
• Scattering problem

– Reflection coefficient 
r(k,t)=r(k,0) exp(iαt)

– Calculate r(k,0) from φ(x,0)

• Inverse scattering problem
– Construct φ(x,t) from r(k,t).

GP wavefunction

ψ1:  

ψ2: 0

1

r

known
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Interference pattern

• Asymptotic momentum distribution
n(x, t) = |α(k=x/t)|2 at large t.

• Inverse scattering theory:

large r gives peaks,   small r gives valleys

• Interference pattern is given by r(k,0) 
based on the initial GP wavefunction
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Schroedinger scattering
• If initial GP wavefunction is real

– equivalent Schroedinger problem with 
potential 
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Classical and quantum chaos
Classical Mechanics:

Regular motion: periodic or quasi-periodic motion
Chaotic motion: exponential divergence of nearby orbits

Quantum Chaos:
Wave function dynamics is always regular due to linearity.
Quantum signatures in systems which are classically chaotic:

1. Time-independent systems (two or more degrees of freedom): 
---Energy spectrum and energy eigenvectors; (Billiards)

2. Time-dependent systems (one degree of freedom + time): 
---Temporal evolution of energy; (Kicked rotor)
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Classical dynamics: the standard mapping

Kicked Rotor

• Chaotic motion leads to diffusive growth in the kinetic energy
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How both quantum mechanics and nonlinearity affect the dynamics
Classical: chaotic motion leads to diffusion
Quantum: no chaos because of the linearity of quantum mechanics
Quantum with nonlinearity:  new opportunity for chaos?
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Kicked BEC

π2=TFocus: Quantum anti-resonance

No or weak interaction: Periodic or quasi-periodic motion, 
no instability

Strong interaction: The destroy of quasi-periodic motion and
instability

Periodic motion; Pure quantum mechanics; Relatively simple

Results: (also for dynamically localized states)

θ
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Evolution of the mean energy of each particle

Anti-Resonance
Periodic

Quasiperiodic

Chaotic
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Chaos: exponential sensitivity to initial condition
Exponential divergence of nearby trajectories

Exponential growth of Bogoliubov amplitudes
-----modes of deviation from the condensate wavefunction

Exponential growth of non-condensed atoms

Dynamical instability of BEC
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Transition to Instability for a dynamically localized state 

Noninteaction:      Quasi-periodic motion
Weak interaction: Still quasi-periodic motion, 

Slow growth in the number of noncondensed atoms
Strong interaction: Quasi-periodic motion is destroyed;

Diffusive increase of energy;
Exponential growth of noncondensed atoms.

Dashed: g=0
Dotted: g=1;
Solid: g=5

Dotted: g=1;
Solid: g=5;
Thick line: fitting
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Outline
• Nonlinear interference of BEC PRL 00, with Liu and Wu

• inverse scattering method
• Nonlinear Quantum Chaos PRL 04, 05 with Zhang, Liu, Raizen

• Kicked BEC
• BEC in a Billiard
• Quasi-particle momentum PRL 06 with Zhang

• Thermal momentum distribution
• Transverse force on a vortex
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Superfluid and quasiparticles

Condensate
Elementary excitations: quasiparticles

• The description of a superfluid

• Quasiparticle energy in a uniform superfluid
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εIn static superfluid:

Quasiparticle momentum in the co-moving frame!  

In a moving superfluid:

What is the quasiparticle momentum in lab frame?
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External potential
ck cr

Quasiparticle Wavepacket

Energy

Atomic mass

Momentum:
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Quasiparticle dynamics

Vector potential

=

Berry phase around a vortex 

Momentum  
is not 
canonical
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Canonical dynamics

• Canonical momentum:

• Equations of motion:
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Transverse force on a Vortex

Magnus force 

or

Superfluid + Normal fluidContributions:

= +

Total 
density

Superfluid
density

Normal fluid 
density

• Thouless,Ao,Niu: momentum 
circulation comes only from 
superfluid.   
• No contribution from normal fruid.  
No Iordanskii force.

Confirmed by calculating quasi-
particle momentum distribution,
provided Berry phase effect is 
taken care of.



22

Quasiparticle momentum distribution around a vortex

thermal atoms

In region S

Condensate atoms: 9740
Thermal atoms: 1650

Condensate
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Conclusion
• Nonlinear interference of BEC PRL 00, with Liu and Wu

• inverse scattering method
• Nonlinear Quantum Chaos PRL 04, 05 with Zhang, Liu, Raizen

• Kicked BEC
• BEC in a Billiard
• Quasi-particle momentum PRL 06 with Zhang

• Thermal momentum distribution
• Transverse force on a vortex

• Nonlinear Dynamics of BEC is Exciting!
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Classical Adiabatic Theorem
In an integrable system, its actions are 
conserved during adiabatic evolution
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Quantum adiabatic theory
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Adiabatic theory for nonlinear 
quantum systems

1. How to generalize the quantum 
adiabatic theorem
• what is the adiabatic condition?
• what are the adiabatic invariants?

2. How to generalize the Berry phase
what will be its use?
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Nonlinear Schrödinger equation
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nonlinear Schrödinger equation in matrix form
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Expand over a set of orthonormal basis 

Global gauge symmetry:  
total prabability is conserved
over-all phase is separated out of dynamics
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We can write the nonlinear Schrödinger equation as a set 
of Hamilton’s equations of motion with Poisson brackets 
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correspondence at 0→
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Nonlinear two level problem

S, relative population.   
θ, relative phase.
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Breakdown of adiabaticity

• appearance of additional eigenstates
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Classical Portraits of 
Quantum State Evolution

Fixed points:  eigenstates

Orbits:   time-dependent states

Adiabatic problem: 
how these states change 
when γ changes slowly

Fix control parameter γ,
plot evolution of quantum states for 
each initial condition
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Adiabatic theorem

• Condition for adiabaticity
– Stability of fixed points or orbits

• Adiabatic invariant
(conserved quantity)
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