

1859-10

Summer School on Novel Quantum Phases and Non-Equilibrium Phenomena in Cold Atomic Gases

27 August - 7 September, 2007

Nonlinear Quantum Dynamics of BEC.

Qian Niu University of Texas at Austin

Nonlinear Dynamics of Bose-Einstein Condensates

Qian Niu

Wuming Liu, Biao Wu, Jie Liu, Chuanwei Zhang, Mark Raizen

Department of Physics and Center for Complex Quantum Systems The University of Texas at Austin

Outline

- Nonlinear interference of BEC PRL 00, with Liu and Wu inverse scattering method
- Nonlinear Quantum Chaos PRL 04, 05 with Zhang, Liu, Raizen Kicked BEC
 BEC in a Billiard
- Quasi-particle momentum PRL 06 with Zhang
 Thermal momentum distribution
 Transverse force on a vortex

BEC Interference

• Andrews et al, Science 1997

Basic considerations

- Relative phase is well defined
 - two packets are produced coherently from one
 - relative phase=0 because of symmetry
 - Interference pattern repeatable
- GP equation works
 - Numerical solutions by Wallis et al PRA 1997
 - The fat central peak remains to be explained

Inverse scattering method

known

- 1D GP is exactly soluble
- Scattering problem
 - Reflection coefficient r(k,t)=r(k,0) exp(iat)

 $i \frac{\partial \psi_1}{\partial x} + \sqrt{g} \phi \psi_2 - \frac{k}{2} \psi_1,$ $i \frac{\partial \psi_2}{\partial x} - \sqrt{g} \phi^* \psi_1 - -\frac{k}{2} \psi_2,$

GP wavefunction

(2)

Inverse scattering problem
 – Construct φ(x,t) from r(k,t).

– Calculate r(k,0) from $\phi(x,0)$

Interference pattern

- Asymptotic momentum distribution n(x, t) = |α(k=x/t)|² at large t.
- Inverse scattering theory:

$$|\alpha(k)|^2 - -\frac{1}{2\pi g} \log(1 - |r(k)|^2).$$

large r gives peaks, small r gives valleys

 Interference pattern is given by r(k,0) based on the initial GP wavefunction

Schroedinger scattering

- If initial GP wavefunction is real
 - equivalent Schroedinger problem with potential $V(x) = g\phi_0^2 - \sqrt{g}\phi_0'$

Outline

- Nonlinear interference of BEC PRL 00, with Liu and Wu inverse scattering method
- Nonlinear Quantum Chaos PRL 04, 05 with Zhang, Liu, Raizen Kicked BEC
 BEC in a Billiard

Quasi-particle momentum PRL 06 with Zhang
Thermal momentum distribution
Transverse force on a vortex

Classical and quantum chaos

Classical Mechanics:

Regular motion: periodic or quasi-periodic motion
 Chaotic motion: exponential divergence of nearby orbits

Quantum Chaos:

 \checkmark Wave function dynamics is always regular due to linearity.

✓ Quantum signatures in systems which are classically chaotic:

1. Time-independent systems (two or more degrees of freedom): ---Energy spectrum and energy eigenvectors; (Billiards)

2. Time-dependent systems (one degree of freedom + time): ---Temporal evolution of energy; (Kicked rotor)

Kicked Rotor

Classical dynamics: the standard mapping

Hamiltonian
$$H = \frac{p^2}{2} + K \cos x \sum_n \delta(t - nT)$$
 Energy $\overline{E}_n = K^2 n / 4$

• Chaotic motion leads to diffusive growth in the kinetic energy

Quantum dynamics: Quantum kicked rotor

$$i\frac{\partial\psi}{\partial t} = -\frac{1}{2}\frac{\partial^2\psi}{\partial\theta^2} + K\cos(\theta)\sum_n \delta(t-nT)\psi \qquad T = 4\pi\alpha$$

✓ Quantum resonance

 α is a rational number $\alpha \neq 1/2$ Energy $\overline{E}_n \propto n^2$

✓ Quantum Anti-Resonance

 $\alpha = 1/2; T = 2\pi$ Periodic motion

✓ Quantum suppression of classical diffusion

 α is an irrational number, Quasi-periodic motion

Kicked BEC

$$i\frac{\partial\psi}{\partial t} = -\frac{1}{2}\frac{\partial^2\psi}{\partial\theta^2} + g|\psi|^2\psi + K\cos(\theta)\sum_n \delta(t-nT)\psi$$

- How both quantum mechanics and nonlinearity affect the dynamics Classical: chaotic motion leads to diffusion Quantum: no chaos because of the linearity of quantum mechanics Quantum with nonlinearity: new opportunity for chaos?
- Focus: Quantum anti-resonance $T = 2\pi$

Periodic motion; Pure quantum mechanics; Relatively simple

- Results: (also for dynamically localized states)
 - No or weak interaction: Periodic or quasi-periodic motion, no instability
 - Strong interaction: The destroy of quasi-periodic motion and instability

Evolution of the mean energy of each particle

Dynamical instability of BEC

• Chaos: exponential sensitivity to initial condition Exponential divergence of nearby trajectories

Exponential growth of Bogoliubov amplitudes

 u_k, v_k -----modes of deviation from the condensate wavefunction

Exponential growth of non-condensed atoms

$$\langle \partial N(t) \rangle = \sum_{k=1}^{\infty} \langle v_k(t) | v_k(t) \rangle$$

Stability phase diagram

Transition to Instability for a dynamically localized state

- Noninteaction: Quasi-periodic motion
- Weak interaction: Still quasi-periodic motion,

Slow growth in the number of noncondensed atoms

Strong interaction: Quasi-periodic motion is destroyed;

Diffusive increase of energy;

Exponential growth of noncondensed atoms.

Outline

- Nonlinear interference of BEC PRL 00, with Liu and Wu
- inverse scattering method
- Nonlinear Quantum Chaos PRL 04, 05 with Zhang, Liu, Raizen
- Kicked BEC
- BEC in a Billiard
- Quasi-particle momentum PRL 06 with Zhang
- Thermal momentum distribution
- Transverse force on a vortex

Superfluid and quasiparticles

- The description of a superfluid
 - ✓ Condensate
 - ✓ Elementary excitations: quasiparticles
- Quasiparticle energy in a uniform superfluid

In static superfluid:
$$\varepsilon_p = \sqrt{\frac{p^2}{2} \left(\frac{p^2}{2} + 2gn\right)}$$

In a moving superfluid:

$$E_{ex} = \varepsilon_{\vec{p}} + \vec{p} \bullet \vec{v}$$

Quasiparticle momentum in the co-moving frame!

What is the quasiparticle momentum in lab frame?

Quasiparticle dynamics

$$\dot{\mathbf{r}}_{c} = \frac{\partial \omega}{\partial \mathbf{q}_{c}} + \frac{\partial \rho}{\partial \mathbf{q}_{c}} \left(\dot{\mathbf{r}}_{c} \cdot \mathbf{v}_{s} \right), \\ \dot{\mathbf{q}}_{c} = -\frac{\partial \omega}{\partial \mathbf{r}_{c}} - \dot{\mathbf{r}}_{c} \times \left(\frac{\partial \rho}{\partial \mathbf{r}_{c}} \times \mathbf{v}_{s} \right) + \left(\dot{\mathbf{q}}_{c} \cdot \frac{\partial \rho}{\partial \mathbf{q}_{c}} \right) \mathbf{v}_{s}$$

Vector potential
$$\mathbf{A} = i \langle \phi | \sigma_z | \partial \phi / \partial \mathbf{r}_c \rangle = -(\rho - 1) \nabla \alpha (\mathbf{r}_c)$$

Berry phase around a vortex

$$\Gamma\left(\mathcal{C}\right) = \oint_{\mathcal{C}} d\mathbf{r}_c \cdot \mathbf{A} = -\oint_{\mathcal{C}} \left(\rho - 1\right) d\alpha\left(\mathbf{r}_c\right) = -2\pi \left(\rho - 1\right)$$

Canonical dynamics

• Canonical momentum:

 $\mathbf{k}_{c} = \mathbf{q}_{c} + (1 - \rho) \, \mathbf{v}_{s}$

• Equations of motion:

$$\dot{\mathbf{r}}_{c} = \frac{\partial \omega}{\partial \mathbf{k}_{c}}, \dot{\mathbf{k}}_{c} = -\frac{\partial \omega}{\partial \mathbf{r}_{c}},$$

Transverse force on a Vortex

> Magnus force
$$\mathbf{F} = \kappa \left(\mathcal{C} \right) \hat{\mathbf{z}} \times \mathbf{v}_L$$

 \triangleright controversy

 $n_{tot} = n_s + \rho_n \quad \rho_n = \frac{2\pi^2}{45} \frac{(k_B T)^4}{\hbar^3 s^5}$ $\downarrow \qquad \qquad \downarrow$ Total Superfluid Normal fluid

density density density

 $\kappa\left(\mathcal{C}\right)=2\pi\hbar n_{tot}/m$ or $\kappa\left(\mathcal{C}\right)=2\pi\hbar n_{s}/m$

• Thouless,Ao,Niu: momentum circulation comes only from superfluid.

No contribution from normal fruid.
 No lordanskii force.

Confirmed by calculating quasiparticle momentum distribution, provided Berry phase effect is taken care of.

Quasiparticle momentum distribution around a vortex

Conclusion

- Nonlinear interference of BEC PRL 00, with Liu and Wu
- inverse scattering method
- Nonlinear Quantum Chaos PRL 04, 05 with Zhang, Liu, Raizen
- Kicked BEC
- BEC in a Billiard
- Quasi-particle momentum PRL 06 with Zhang
- Thermal momentum distribution
- Transverse force on a vortex

• Nonlinear Dynamics of BEC is Exciting!

Classical Adiabatic Theorem

In an integrable system, its actions are conserved during adiabatic evolution

actions:
$$I_i = \frac{1}{2\pi} \oint_{\gamma_i} \mathbf{p} \cdot d\mathbf{q}$$
 angles: $\theta_1, \theta_2, \dots, \theta_n$
Examples: 1. Pendulum, $I = E/\omega$
2. charge in magnetic field $I = \frac{3qBR^2}{2}$

Quantum adiabatic theory

Initially,
$$\psi(0) = \sum_{n} a_{n} \varphi_{n}(\mathbf{R}_{0})$$
Later, $\psi(t) = \sum_{n} a_{n} e^{-i\lambda_{n}(t)} \varphi_{n}(\mathbf{R}(t))$ The occupation
probabilities $I_{n} = |a_{n}|^{2}$ are adiabatic invariants.

$$\lambda_{n}(t) = \frac{1}{\hbar} \int_{0}^{t} E_{n}(\mathbf{R}(\tau)) d\tau - \gamma_{n}(t)$$

Adiabatic theory for nonlinear quantum systems

1. How to generalize the quantum adiabatic theorem

- what is the adiabatic condition?
- what are the adiabatic invariants?

2. How to generalize the Berry phase what will be its use?

Nonlinear Schrödinger equation

Expand over a set of orthonormal basis

$$\psi = \sum_{n=1}^{N} \psi_n \varphi_n$$

nonlinear Schrödinger equation in matrix form

$$i\frac{d}{dt}|\psi\rangle = H(\psi^*,\psi;\mathbf{R})|\psi\rangle \qquad |\psi\rangle = \begin{pmatrix} \psi_1 \\ \psi_2 \\ \vdots \\ \psi_N \end{pmatrix}$$

Global gauge symmetry:

total prabability is conserved over-all phase is separated out of dynamics

Map to a classical problem

We can write the nonlinear Schrödinger equation as a set of Hamilton's equations of motion with Poisson brackets $\{\psi_i^*, \psi_k\} = i\delta_{ik}$

$$i\frac{d}{dt}|\psi\rangle = H(\psi^*,\psi;\mathbf{R})|\psi\rangle$$

$$\implies \frac{d}{dt}\psi_j = \{\psi_j, H(\psi^*,\psi;\mathbf{R})\} = -i\frac{\partial}{\partial\psi_j^*}H(\psi^*,\psi;\mathbf{R})$$

NOTE: This is different from the usual classical-quantum correspondence at $\hbar \rightarrow 0$

Nonlinear two level problem

$$i\frac{d}{dt}\binom{a}{b} = H(\gamma)\binom{a}{b} \qquad H(\gamma) = \begin{pmatrix} \frac{\gamma}{2} + \frac{C}{2}(|b|^2 - |a|^2) & \frac{V}{2} \\ \frac{V}{2} & -\frac{\gamma}{2} - \frac{C}{2}(|b|^2 - |a|^2) \end{pmatrix}$$

$$H_{e}(s,\theta,\gamma) = \frac{C}{2}s^{2} + \gamma s - V\sqrt{1-s^{2}}\cos\theta$$

S, relative population. θ , relative phase.

Breakdown of adiabaticity

appearance of additional eigenstates

Classical Portraits of Quantum State Evolution

Fix control parameter γ , plot evolution of quantum states for each initial condition

Fixed points: eigenstates

Orbits: time-dependent states

Adiabatic problem: how these states change when γ changes slowly

Adiabatic theorem

(e): c/v=2 γ =0.05

1.0

(f): $c/v=2 \gamma = \gamma$

h): c/v=2 γ =5

Condition for adiabaticity

 Stability of fixed points or orbits

 Adiabatic invariant (conserved quantity)

Classical action

$$\gamma_{AA}^{j}(R) = \frac{1}{2\pi} \oint dt \left\langle \phi^{j} \left| i \frac{d}{dt} \right| \phi^{j} \right\rangle = \oint dt \sum_{m=1}^{N-1} p_{m} dq_{m} = I_{j}$$

Aharonov-Anandan phase

21