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Outline

e Optical lattices for studying
the Bose-Hubbard (BH) model
eTransport in the BH model

eDisorder in the BH model




Quantum simulation

Simulating Physics with Computers

o"
I Want to talk Richard P. Feynman
a b O u t t h e Department of Physics, California Institute of Technology, Pasadena, California 91107
Received May 7, 1951
possibility that
. 4. QUANTUM COMPUTERS—UNIVERSAL QUANTUM
there is to be an ST

The first branch, one you might call a side-remark, is, Can you do it

. I . with a new kind of computer—a quantum computer? (I'll come back to the

exa Ct S I m u at I O n ) other branch in a moment.) Now it turns out, as far as I can tell, that you
can simulate this with a quantum system, with quantum computer elements.

It's not a Turing machine, but a machine of a different kind. If we disregard

t h at t h e CO m p u t e r (lh; continuity of sqacel;md make il]disclrcte, and s0 m;‘ asan approximation
the same way as we allowed ourselves in the classical case), it does seem to
will do exactly the
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same as nature. Universal Quantum Simulators

Seth Lloyd

Feynman's 1082 conjecture, that quantum computers can be programmed to simulate
any local quantum system, is shown to be comect.

Make a quantum system that you can control and
probe perfectly behave like one that you want to study

OuiF goal

Realize quantum simulation for ~100,000 strongly
interacting quantum particles (spins, bosons, fermions...)




superconducting
cuprates
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Phenomenology
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Spherical cow Hubbard model

milk / day / cow? d-wave superconductivity?




Optical/lattices

Atoms confined by

i =\ -

polarization gradients - ——

406 nm
Tunneling and interaction energy controlled by lattice depth
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Bose-Hubbard (BH) model

oBosor.15 (f37Rb, 4He....) in M A A M /\

1 cost (237 cost (2 o (7]

a periodic potential....

e _..in the tight binding limit
(n-n tunneling and on-site interactions only)... 2 4

e .are one realization of the BH model

H=-1) (blb, +bb, )+UY n,(n,-1)
@) ,-

tunneling interaction
(kinetic + potential)




BH model applications

Supersolids (?)  Superfluids Josephson- Thin “super-

. . . . - )
in porous media junction arrays conducting
films

And many other physical systems...




Known and unknown BH model physics

Eull properties or BH model not exactly selvable
using any: known method (theory, digital
simulation)

Ground state phase diagram for

“pure” model well understood

Freericks & Monien, PRB 53, 2691 (1996)
more recent numerical work: PRA 70, 053615 (2004)
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Hopping Integral x=dt/U

Lack of consensus on:
etransport properties of pure

and disordered models
eground state phase diagram of disordered model




Our. experiment

Better than f/1 optical access along 5 directions




Transport measurements

Measurements in solids: linear response

thickness
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Transport measurements

thickness
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SC: superconductor R—> 0,7 >0 "
M: metal R—(0,0),7 —0 w2 sput.tered
IN: insulator R—> w0, 7T >0 Ga films




How to explain “Bose-metal?”

Controversy...useful reviews:

e Mason, Superconductor-Metal-Insulator Transitions in Two Dimensions, Ph.D.
dissertation, 2001.

e Goldman, Superconductor-insulator transitions in the two-dimensional limit, Physica
E 18, 1-6 (2003).

e Phillips and Dalidovich, The elusive Bose metal. Science, 302, 243-247 (2003).

e Goldman and Markovic, Superconductor-Insulator Transitions in the Two-
Dimensional Limit. Physics Today, Nov., 39-44 (1998).

Belief: pairs are unbreken: infmetallic state

theory using variants of BH model!

eDoes BH phenomenology agree with data?
e|s disorder required (i.e, universal conductance not always right)?
eDoes BH model include intrinsic dissipation / Bose-metal?




Iransportin 3D

24 ms |

transfer impulse free release image
into lattice (7 ms) evolution (200 ps)
(100 ms) (<200 ms)

»Time




Quasi-momentum distribution




Observable: velocity
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evolution time (ms)




What are we seeing?

This is not the dynamic or Landau instability!

eno excitations reminiscent of LENS data
eno significant change in BEC fraction
e|low velocity (v<1.5 mm/s; inflection
point=2.6 mm/s) / linear response

Previous work: BH transport in 1D (NIST), BH
dynamical instability in 1,2,3D (Ketterle), no
systematic study of temperature




Damped harmonic oscillator

Treat as damped harmonic oscillator
oo
m z =

RESLOMNE N OICE ERICLION OKCE

& Just like the Drude model...

...0f electrical resistance




Temperature dependence

y (Hz)
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Fit to model of
thermally-activated
damping:

y:yo_l_}/ooe
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rule out
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Phase slips

Packard group Helium whistle




Phase slips: Langer and Fisher, 1967

What if a vortex or vortex
ring nucleates and moves
across the BEC?

Cornell group

courtesy of Goldbart group




Free energy surface

E A thermally-
activated

hopping
Barrier: energetic cost
to remove atoms from

the BEC /\

Tilt: lower
velocity =
lower kinetic
energy

>V




Temperature dependence
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Theoretical predictions

Langer & Ambegaokar, Phys. Rev. 164, 498 (1967)
McCumber & Halperin, PRB 1, 1054 (1970)
Caldeira & Leggett, PRL 46, 211 (1981)

Zaikin et al., PRL 78, 1552 (1997)

Quantum phase slip rate: " oc ¢

Calculation of action for BH model:

PHYSICAL REVIEW A 71, 063613 (2005)

Decay of superfluid currents in a moving system of strongly interacting bosons

A. Polkovnikov, E. Altman, E. Demler. B. Halperin. and M. D. Lukin

Physics Department, Harvard University, Cambridge, Massachusetts 02138, USA
(Received 20 December 2004; published 23 June 2005)




Scaling with BH model parameters

lattice depth (s)
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Direct observation of phase slips

AW IMmage

[E profile subtracted




Punchiine

e Data for Bose-Hubbard model with external

confinement consistent with metallic ground state
= does finite size suppress vortex binding dominant for bulk?
(Kosterlitz & Thouless, J. Phys. C 1972, 1973; Nelson and Halperin
PRB 1978, 1989; liquid drop MC: arxiv/0706.2125)
= what is the timescale for vortices to leave the BEC? Are they
nucleated only at high velocity? (See Anderson, PRL 98, 110402)
= \What is the role of finite frequency?

e Consistency with phase-slip model & intrinsic

aissipation
etemperature dependence
escaling law
edirect observation of phase slips

o [ttpE)//arxiv.org/als/0708.3074




Disordered BH model

Disorder is everywhere

disordered Bose-Hubbard model

81 L\ VA

H = Zg Zzy (5, +b*‘b)+z (n,-1)

: ”dlagonal” dlsorder : “off- dlagonal” disorder




Disordered BH model

start by understanding
ground state phase diagram

superfluid

fluid

repulsion U

f

disorder

- - - Pure system
— MI-SF(BG-SF)
- — MI-BG

BV=40
AN=0.07

increasing lattice depth
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Disordered BHi predictions

SF: superfluid
BG: Bose-glass
(gapless, compressible)
MI: Mott-insulator
(gapless, incompressible)
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repulsion U repulsion U

QMC / Trivedi: review: Quantum Phase Transition in Disordered
Systems: What are the Issues, in Proceedings of the 20th International
Workshop on Condensed Matter Theories 12, 141 (1997)




Disordered BHi predictions

// ) Prokov'ef &
' T Svistunov, PRL 92,

015703 (2004)

e ¥

1 & L | 1 | gheer-= L3 1 1 1
036 037 038 039 04 K 036 037 038 039 04 K

off-diagonal disorder in 2D:
SF-MG (Mott-glass, gapless & incompressible)

- - - Pure system
= MI-SF(BG-SF)
- - MI-BG

— Phillips,
AN=0.07 ‘ cond-mat/
' 0612505




Discriminate using condensate fraction?




What should we expect?

critical V,




Spechle




The theory of optical speckle

What is the speckle “size?”

Most theories assume no site-to-site correlations

Autocorrelation width

,U oC <[(f)](}?—|— C_l;)> Intensity autocorrelation
(Az),, =6.7A( f/DY (Ar)l/z =1.4A(f/D)




Autocorrelation measurement
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Fine=grain 3D disorder

550 nm

SN

30° beams —)» 650 nm
45° beam —» 790 nm

Lattice Spacing = 406 nm
3D AC measurement




Spechle distribution

>
g
=
®©
O
@)
bt
al

Intensity

_1L
Exponential distribution: P([) oc e %

Disorder in all BH parameters:
H=Y&->1,bb, +blb )+Z (n,-1)
i ()

Working with Ceperley to determlne distributions




Disorder comparison

Joint probability (Ae,=1 E;|P,)

uncorrelated
speckle size << lattice spacing

JANVALINVAVEN

our speckle field
speckle size = lattice spacing

uncorrelated
0 4 6
5 um speckle field SV (E )
speckle size >> lattice spacing 0* R
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incommensurate lattice

incommensurate
lattice

0.02

our speckle field
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Condensate fraction: results

Bandmap Adiabatic

S -

0M |_, Time 20M 1, Time
transfer bandmap Image transfer adiabatic Image
into lattice (200 ps) into lattice (15 ms)
(100 ms) (100 ms)

® bandmap
® adiabatic

n=31In
center of lattice




Spechle effect on condensate fraction
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Conclusion

Iiransport measurements:
e linear response, low velocity, temperature-

dependence
e dissipation observed consistent with phase slips

e vortices nucleated by linear motion observed

Diserdered BH moedel

e fine-grained disorder created using speckle
einitial measurements of N,/ N : STAY TUNED!
e other measurements needed (local gap,

correlations, ...)
e engineered speckle: how much does physics

depend on disorder details?






