

1859-12

Summer School on Novel Quantum Phases and Non-Equilibrium Phenomena in Cold Atomic Gases

27 August - 7 September, 2007

From few-body to many-body physics in cold Fermi gases - Part I

Georgy Shlyapnikov LPTMS University Paris Sud

From few-body to many-body physics in ultracold Fermi gases

Gora Shlyapnikov LPTMS, Orsay, France University of Amsterdam Lecture 1. Molecular regime in two-component Fermi gases

Contents

- Introduction.
- Feshbach resonance. Molecules in Fermi gases
- Molecule-molecule interaction
- Remarkable collisional stability
- Molecular BEC
- Novel composite bosons ?

Two-component trapped Fermi gas

Weakly interacting ultracold limit

Weakly interacting gas $|a| \ll n^{-1/3}$ $n|a|^3 \ll 1$ or $k_F|a| \ll 1$

Ultracold limit

 $\Lambda_T = \left(\frac{2\pi\hbar^2}{mT}\right)^{1/2} \gg R_e \quad \Rightarrow \text{s-wave scattering}$ Interspecies interaction only

What does the interaction do? $a < 0 \rightarrow$ Interspecies attraction \rightarrow Cooper pairing at low T $\vec{k} \bullet \quad \bullet -\vec{k}$ Superfluid BCS transition $\rightarrow T_c \sim E_F \exp\{-\pi/2k_F|a|\}$ $T_c \ll 0.1E_F$ for ordinary a Very hard to reach

Experiments ⁴⁰K ⁶Li

Dilute limit $nR_e^3 \ll 1$ Ultracold limit $\Lambda_T \gg R_e$ Quantum degeneracy \rightarrow JILA 1998 ⁴⁰K At present $n \sim 10^{13} - 10^{14} \text{cm}^{-3}$; $T \sim 1 \mu \text{K}$ JILA, LENS Innsbruck, MIT, ENS, Rice, Duke, ETH, Hamburg, Tuebingen, Toronto

Feshbach resonance

Superfluid regimes

 $k_F|a| \ll 1 \rightarrow$ If $k_F|a| > 1 \rightarrow$ Strongly interacting regime $a \gg R_e \longrightarrow$

BCS

- III $na^3 \ll 1 \rightarrow$ Gas of bosonic molecules **BEC** of weakly bound molecules

Scattering amplitude and bound state

. - p.8/19

Gas of bosonic molecules (dimers)

Region III $(a > 0) \Rightarrow$ gas of weakly bound bosonic molecules

 $a \ll n^{-1/3}$ or $na^3 \ll 1 \Rightarrow$ weakly interacting Bose gas

Interaction energy
$$E_{int} = \frac{N(N-1)}{2} \varepsilon_{int}$$

 $\varepsilon_{int} = \frac{g}{V}; \qquad g = ?$
 $g < 0 \Rightarrow$ collapse of a Bose-Einstein condensate

 $g > 0 \Rightarrow$ stable BEC

Molecule-molecule elastic interaction

Interaction constant $g = 4\pi\hbar^2 a_{dd}/2m$ "Old answer" $\rightarrow 2a$ **4-body problem** Exact solution for $a \gg R_e$ (Petrov et al 2003) $\vec{r_1}$ $\Psi \rightarrow 9$ variables \vec{R} $\vec{r_2}$ $a \gg R_e \Rightarrow$ Zero-range approximation $\Psi_{r_1 \to 0} \to f(\vec{r_2}, \vec{R})(1/4\pi r_1 - 1/4\pi a)$ $R \gg a$ $\Psi = \phi_0(r_1)\phi_0(r_2)(1 - a_{dd}/R);$ $\phi_0(r) = \frac{1}{\sqrt{2\pi a}} \exp(-r/a)$

 $R \gg a$ $f(\vec{r}, \vec{R}) = (2/rR) \exp(-r/a)(1 - a_{dd}/R);$

Derivation of a_{dd}

Limit $r_1
ightarrow 0$ Integral equation for f (3 variables) $a_{dd} = 0.6a$

Monte Carlo (Giorgini/Astracharchik, 2004)

Diagrammatic approach (M.Kagan et al, 2005; V. Gurarie et al, 2006)

Weakly bound dimers

Weakly bound dimers \rightarrow The highest rovibrational state of the diatomic molecule

Collisional relaxation to deep bound states (~ 1ms for Rb₂ at $n \sim 10^{13}$ cm⁻³)

Atom-dimer collisions. Physical picture

Weakly bound dimer $\sim a$ Size \rightarrow Deep bound state $\sim R_e$ (50 Å) $\ll a$ 2 $\sim R_e$ 2 particles are identical fermions 1 1 Pauli principle

$$\alpha_{rel} \sim (k_{eff} R_e)^{2?} \sim (R_e/a)^{2?}$$

Atom-dimer collisions. Relaxation rate

The released binding energy is $\sim \hbar^2/mR_e^2$ Establish the dependence of α_{rel} on a

 $R_{e} \rightarrow R_{e} = 2 \text{ particles are identical fermions}$

 $r \sim R_e \Rightarrow \Psi = A(a)\tilde{\psi} \rightarrow \text{valid at any } r \ll a$

 $R_e \ll r \ll a \Rightarrow$ zero-range approximation as well as at any $r \gg R_e$

The only distance scale is $a \Rightarrow , \Psi = B(a)F(\vec{r_i}/a)$

$$\rho = \sqrt{x^2 + y^2} \ll a \quad \Rightarrow \quad \Psi \approx B(a)(\rho/a)^{\gamma} \Phi_{\gamma}(\Omega)$$
$$A(a) = B(a)a^{-\gamma} \qquad \gamma = \approx 0.1662$$

Atom-dimer collisions. Relaxation rate

Long distance behavior \Rightarrow

$$\Psi = \left(1 - \frac{a_{ad}}{R}\right) \frac{1}{\sqrt{2\pi}a^{3/2}(r/a)} \exp\left(-r/a\right)$$

$$\Rightarrow B \propto a^{-3/2}$$
. Hence, $A(a) \propto a^{-3/2-\gamma}$

$$\alpha_{\rm rel} \propto A^2(a) \Rightarrow \alpha_{rel} \propto a^{-3-2\gamma} = a^{-3.33}$$

$$\alpha_{rel} = C\left(\frac{\hbar R_e}{m}\right) \left(\frac{R_e}{a}\right)^s; \qquad s = 3.33$$

Strong decrease of relaxation on approach to resonance

Molecule-molecule relaxation collisions

$$\alpha_{rel} = C \frac{\hbar R_e}{m} \left(\frac{R_e}{a}\right)^s; \quad s = 2.55$$

$$\tau \sim (\alpha_{rel} n)^{-1} \sim \text{seconds}$$

Molecules of bosonoc atoms

Suppressed collisional relaxation

Bose-Einstein condensates of molecules

Suppressed relaxation Fast elastic collisions $a_{dd} = 0.6a$

$${}^{6}\mathrm{Li}_{2} \to \frac{\alpha_{rel}}{\alpha_{el}} \le 10^{-4}$$

