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Lecture 1. Molecular regime in two-component Fermi gases
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Two-component trapped Fermi gas
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Weakly interacting ultracold limit
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Experiments
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Feshbach resonance
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Superfluid regimes
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Scattering amplitude and bound state
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Gas of bosonic molecules (dimers)

Region III

�
� � � � � gas of weakly bound bosonic molecules
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Molecule-molecule elastic interaction
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Derivation of �� �
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Weakly bound dimers

Weakly bound dimers � The highest rovibrational state of
the diatomic molecule
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Atom-dimer collisions. Physical picture
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Atom-dimer collisions. Relaxation rate
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Atom-dimer collisions. Relaxation rate
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Molecule-molecule relaxation collisions
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Suppressed collisional relaxation
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Bose-Einstein condensates of molecules

Suppressed relaxation Fast elastic collisions �� � � �� � �

� �
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Efficient evaporative cooling � BEC
JILA, Innsbruck, MIT, ENS, Rice
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Composite bosons

Bosonic behavior at large separations BEC

Small separations ?
fermionic correlations!
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