The Abdus Salam

Summer School on Novel Quantum Phases and Non-Equilibrium

 Phenomena in Cold Atomic Gases
27 August - 7 September, 2007

Tutorial on DMRG and applications to cold atoms out-of-equilibrium

Tutorial on DMRG \& applications to cold atoms out-of-equilibrium

Ulrich Schollwöck

RWTH Aachen

on new common grounds

the physics:
condensed matter meets atomic optics

approximations in solids

fundamental electronic Hamiltonian

$$
H=\sum_{j=1}^{e^{-}} \frac{\vec{p}_{j}^{2}}{2 m_{e}}+\frac{1}{2} \sum_{i \neq j}^{e^{-}} \frac{e^{2}}{\left|\vec{r}_{i}-\vec{r}_{j}\right|}+\sum_{j}^{e^{-}} V_{e f f}\left(\vec{r}_{j}\right)
$$

problem: electron-electron interactions

effective potential one-electron picture band conductor
 Mott insulator

why strong correlations?

0 dimensions

magnetic
impurity physics
quantum dots

I dimension

2 dimensions
realistic modelling:
transition metal, rare earth compounds

spin chains \& ladders
Luttinger liquid
frustrated magnets
high- T_{c} superconductors

cold atomic gases in optical lattices

ultra-cold bosonic atoms form Bose-Einstein condensate (Boulder \& MIT groups, 1995)

standing waves from laser superimpose an optical lattice
\square Greiner et al (Munich group), Nature '02

\square very well described by bosonic Hubbard model

lattice bosons: control \& tunability

controlled tuning of interaction U / t in time via lattice depth
adiabatic change of U / t : quantum phase transition superfluid condensate to Mott-insulator
\square momentum distribution function

sudden change of U / t to Mott insulator: collapse and revival

quantum optics meets strong correlations: quantum simulator

experiments on lattice fermions

detection of Fermi surface for ${ }^{40} \mathrm{~K}$ in an optical lattice
\square momentum distribution

- hyperfine levels = spin levels

M. Köhl et al (Esslinger group), PRL'05

the methods: classical simulations of quantum systems

compression of information

compression of information necessary and desirable
\square diverging number of degrees of freedom
emergent macroscopic quantities: temperature, pressure, ...
classical spins
thermodynamic limit: $N \rightarrow \infty \quad 2 N$ degrees of freedom (linear)
quantum spins
superposition of states
thermodynamic limit: $N \rightarrow \infty \quad 2^{N}$ degrees of freedom (exponential)

classical computers and simulators

large-scale quantum computers and simulators far away
what can we do with classical computers?
\square exact diagonalizations
\square limited to small lattice sizes: 40 (spins), 20 (electrons)
\square stochastic sampling of state space
\square quantum Monte Carlo techniques
\square negative sign problem for fermionic and frustrated spin systems
\square physically driven selection of subspace: decimation
\square variational methods
\square renormalization group methods
\square how do we find the good selection?

"one-dimensional" decimation

arrange degrees of freedom on one axis
levels (empty, occupied)

sites (empty, occupied)

"one-dimensional" decimation

\square arrange degrees of freedom on one axis

sites (empty, occupied)

enlarge Hilbert space by adding site after site

"one-dimensional" decimation

\square arrange degrees of freedom on one axis

sites (empty, occupied)

\square enlarge Hilbert space by adding site after site
\square decimate Hilbert space: reduced basis, method-dependent

$$
|\beta\rangle=\sum_{\alpha} \sum_{\sigma}\langle\langle\alpha \sigma \mid \beta\rangle \mid \alpha\rangle|\sigma\rangle \text { or }|\beta\rangle=\sum_{\alpha} \sum_{\substack{\sigma \\ M \times M \text { matrices }}} \underbrace{}_{\substack{\uparrow \\ A_{\alpha \beta}[\sigma]}}|\alpha\rangle|\sigma\rangle
$$

"one-dimensional" decimation

Schollwöck, J.Magn.Mag.Mat., in press (2006)
arrange degrees of freedom on one axis

sites (empty, occupied)

enlarge Hilbert space by adding site after site

\square decimate Hilbert space: reduced basis, method-dependent

$$
|\beta\rangle=\sum_{\alpha} \sum_{\sigma} \underbrace{\langle\alpha \sigma \mid \beta\rangle}_{\uparrow}|\alpha\rangle|\sigma\rangle \text { or }|\beta\rangle=\sum_{\alpha} \sum_{\substack{\sigma \times M \text { matrices }}} \underbrace{A_{M}}_{\substack{A_{\alpha \beta}[\sigma]}}|\alpha\rangle|\sigma\rangle
$$

is there an optimal decimation prescription?

matrix product states

recursion through all system sizes

total system wave functions

$$
|\psi\rangle=\sum_{\sigma_{1} \ldots \sigma_{L}} \overbrace{\left.\left(A_{1}\left[\sigma_{1}\right] \ldots A_{L}\left[\sigma_{L}\right]\right)\right)}\left|\sigma_{1} \ldots \sigma_{L}\right\rangle \quad \begin{gathered}
\text { scalar coefficient: } \\
\sim \text { matrix product }
\end{gathered}
$$

\square matrix product state (MPS): generic structure for decimation
\square control parameter: matrix dimension M
\square A-matrices determined by decimation prescription

ground states: DMRG

optimal: find $(M \times M)$ A-matrices minimizing $\quad\langle\psi| \hat{H}|\psi\rangle$
highly non-linear
density-matrix renormalization group (DMRG) does the job linearly (White, PRL'92)
start from some set of A-matrices ("warm-up")
sequentially choose one A to minimize $\langle\psi| \hat{H}|\psi\rangle$ constraining all others
AAAAAAAAAAAAAAAAAAAAAAAAAAA

variational method, typically reaches energy minimum: optimal!
Takasaki, Hikihara, Nishino, J. Phys. Soc. Jpn. 68, 1537 (99); Verstraete, Porras, Cirac, PRL (04)

how good is optimal?

\square is the optimal $M \times M$ MPS close to the true ground state?
\square empirical evidence:
one-dimensional ground state physics \& thermodynamics at unprecedented precision (US, RMP 77, 259 (2005))
\square up to $\mathrm{O}(1000)$ lattice sites
\square no sign problem: fermions!
extrapolations in M (up to 10,000)
\square almost machine precision: chains of spins M 200-500, fermions 500-I000

\square modest results in 2D
QIT: entanglement scaling!

entanglement

quantum states: superpositions

$$
|\psi\rangle=\sum \alpha_{i}\left|\psi_{i}\right\rangle
$$

many-body quantum states: (bipartite) entanglement

$$
\begin{array}{llll}
1 & \text { classical } & |\psi\rangle=|\uparrow\rangle|\downarrow\rangle & \text { product } \\
\bullet & \text { quantum } & |\psi\rangle \sim|\uparrow\rangle|\uparrow\rangle+|\downarrow\rangle|\downarrow\rangle & \text { entangled }
\end{array}
$$

measuring bipartite entanglement S: reduced density matrix

$$
\begin{aligned}
& |\psi\rangle=\sum \psi_{i j}|i\rangle|j\rangle \quad \hat{\rho}=|\psi\rangle\langle\psi| \rightarrow \hat{\rho}_{S}=\operatorname{Tr}_{E} \hat{\rho} \\
& S=-\operatorname{Tr}\left[\hat{\rho_{S}} \log _{2} \hat{\rho_{S}}\right]=-\sum w_{\alpha} \log _{2} w_{\alpha}
\end{aligned}
$$

Schmidt decomposition

\square calculating entanglement in a general quantum state $|\psi\rangle=\sum \psi_{i j}|i\rangle|j\rangle$
$N^{S} N^{E}$ coefficients
singular value decomposition of matrix $A_{i j}=\psi_{i j}$

$$
A=U D V^{T}
$$

Schmidt decomposition

$$
|\psi\rangle=\sum_{\alpha=1}^{N_{\text {Schmidt }}} \sqrt{w_{\alpha}}\left|w_{\alpha}^{S}\right\rangle\left|w_{\alpha}^{E}\right\rangle \quad N_{\text {Schmidt }} \leq \min \left(N^{S}, N^{E}\right) \text { coeffs }
$$

\square reduced density matrices
$\hat{\rho}_{S}=\sum_{\alpha}^{N_{\text {schmiat }}} w_{\alpha}\left|w_{\alpha}^{S}\right\rangle\left\langle w_{\alpha}^{S}\right| \hat{\rho}_{E}=\sum_{\alpha}^{N_{\text {schmidt }}} w_{\alpha}\left|w_{\alpha}^{E}\right\rangle\left\langle w_{\alpha}^{E}\right|$ identical spectra

- system and environment share bipartite entanglement

area law

\square bipartite entanglement shared property of system and environment
(hyper)surface property

effective surface width (grey): correlation length
scaling obeys area law in d dimensions

$$
S \sim L^{d-1}(\times \xi)
$$

keep in mind: what happens at criticality?

Bekenstein,
PRD 7, 2333 (73)
Callan,Wilczek,
Phys. Lett. B, 333 (95)

bipartite entanglement in DMRG

\square arbitrary bipartition
AAAAAAAA AAAAAAAAAAAAAAA

$$
|\psi\rangle=\sum_{\alpha}^{\mathbf{M}} \sqrt{w_{\alpha}}\left|\alpha_{S}\right\rangle\left|\alpha_{E}\right\rangle \quad \text { Schmidt decomposition }
$$

\square reduced density matrix and bipartite entanglement

$$
\hat{\rho_{S}}=\sum_{\alpha} w_{\alpha}\left|\alpha_{S}\right\rangle\left\langle\alpha_{S}\right| \quad S=-\sum_{\substack{\alpha \\ \text { typical decay of density matrix spectrum }}} w_{\alpha} \log _{2} w_{\alpha} \leq \log _{\substack{\text { codable } \\ \text { maximum }}}^{\log _{2} M}
$$

$\underbrace{}_{M}$| I D |
| :--- |
| fast decay |
| small loss |
| good |

entanglement scaling: gapped systems

Latorre, Rico, Vidal, Kitaev (03)

entanglement grows with system surface: area law

entanglement scaling: critical systems

ID: logarithmic correction
$S_{L}=\frac{c+\bar{c}}{6} \log _{2} L \quad$ central charges

Latorre, Rico,Vidal, Quant. Inf. Comp. 4, 48 (2004)
$M>L^{k} \quad k=(c+\bar{c}) / 6 \quad \mathrm{k}$ is small: DMRG works quite well
2D: rich scaling behaviour, DMRG still fails
\square fermionic systems
Barthel, Chung, US, PRA 74, 022329

ID Fermi surface: logarithmic correction $S \sim c(\mu) L \log _{2} L$ $c=$ surface length

OD Fermi surface (not shown): sub-log diverging correction

[^0]
tunability: can we go beyond ID statics? time-dependence in strongly correlated systems

time-dependent DMRG

Daley, Kollath, US, Vidal, J. Stat. Mech (2004) P04005; White, Feiguin PRL ‘04

$$
|\psi(t+\Delta t)\rangle=\exp (-\mathrm{i} \hat{H} \Delta t)|\psi(t)\rangle
$$

Trotter decomposition: $\quad \exp (-\mathrm{i} \hat{H} \Delta t)=\ldots e^{-\mathrm{i} h_{i} \Delta t} e^{-\mathrm{i} h_{i+1} \Delta t} \ldots+O\left(\Delta t^{2}\right)$
local infinitesimal time step

\square exact bond evolution
\square optimal state selection: M highest-weight eigenstates of density matrix
\square approximate DMRG description follows time-evolving state
global infinitesimal time step

time-dependent DMRG

driven QPT

Daley, Kollath, US, Vidal, JSTAT '04 Clark, Jaksch, PRA '05
Trebst, US, Troyer, Zoller, PRL '05

Friedrich, US, Khaetskii (in prep.)
strong correlation out of equilibrium
large system sizes
long times
controlled error
ID systems

Gobert, Kollath, US, Schütz, PRE ‘05 Al-Hassanieh et al (OakRidge), '06
response

Kollath, ..., US, Giamarchi, PRL '06
Kollath, US, v Delft, Zwerger, PRA '05
Kollath, US, Zwerger, PRL ‘05
White, Feiguin, PRL ‘04

quantum dynamics far from equilibrium

dynamics far from equilibrium

prepare ferromagnetic domains in an $\mathrm{S}=\mathrm{I} / 2$ antiferromagnet far from equilibrium state

\square antiferromagnetic dynamics dissolves domain wall
\square XY chain
\square Heisenberg chain
shock fronts, magnetization carriers?
ballistic or non-ballistic (diffusive) magnetization transport?

XY model dynamics

- solution quasiexact on timescales shown
- ballistic transport, quantized magnetization carriers

Heisenberg model dynamics

- non-ballistic transport on timescales shown
- precursor structures at carrier velocity

error analysis

Trotter decomposition error:
$(\Delta t)^{n} \times(T / \Delta t) \propto T$
ultimately irrelevant
Lieb-Robinson propagation error:
exponential in T
Hastings, Osborne (04)
numbers of states increases exponentially in time: will we hit the wall before the physics happens?

can we go beyond ID? 0D, 2D, 3D

quantum impurities and dots

magnetic impurities in metals

quantum dots

\square Anderson model

$$
\hat{H}_{A}=\sum_{\mu} \epsilon_{d} c_{d \mu}^{\dagger} c_{d \mu}+\frac{U}{2} n_{d \uparrow} n_{d \downarrow}+\int d \epsilon \epsilon a_{\epsilon \mu}^{\dagger} a_{\epsilon \mu}+\left(\frac{\Gamma}{\pi}\right)^{1 / 2} \underset{\text { band }}{\int} d \epsilon\left(a_{\epsilon \mu}^{\dagger} c_{d \mu}+c_{d \mu}^{\dagger} a_{\epsilon \mu}\right)
$$

\square spectral density at impurity: resonance

Wilson's numerical RG

Wilson RMP ‘75

\square focus on conduction band states close to Fermi edge

problem maps to semi-infinite non-interacting chain with decaying hoppings

diagonalize high-energy part
add "sites", diagonalize, retain M lowest-energy eigenstates

DMRG meets NRG

Verstraete, Weichselbaum, US, Cirac, v Delft ‘05

NRG and DMRG: $(M \times M)$ matrix product states
DMRG variationally optimal
\square apply DMRG to NRG-type Hamiltonian: improves NRG

impurity spectral function
\square bidirectional feedback between all energy scales
high energy accessible speed-up > 1,000

feedback: speed \& flexibility

relax/adapt logarithmic discretization
high energies
multiple resonances (external fields)

bath sites non-interacting: unfolding of chain \& product states
~ product of 2 states

\square star geometry for multiple bands (n channels)

allows time-evolution

outlook: two dimensions

\square matrix products in one dimension
$|\psi\rangle=-a \frac{M}{\beta \beta} A \frac{M}{\gamma} A \frac{M}{\delta \delta} A \frac{M}{\varepsilon} A_{\varepsilon} \quad$ rank 2 tensor
tensor contractions in two dimensions Nishino '99

\square correct entanglement scaling properties
\square evaluation feasible, but highly complex; bad scaling with M Verstraete, Cirac '04
development of efficient implementations (still?) problematic

outlook: towards real materials

McCulloch, US, Parcollet, Georges, in progress
\square real materials: band structure + correlation effects LDA + DMFT
dynamical mean-field theory interacting lattice model
local impurity problem

$G_{\text {lattice }}=G_{\mathrm{imp}}\left(\epsilon_{i}, U, \Gamma(\omega)\right)$
\longleftarrow electronic bath
(Kotliar \& Vollhardt)
real materials (d,f-orbitals): multiple bands, local clusters
powerful new DMRG-based impurity solver will help

DMRG \& applications to cold atoms out-of-equilibrium II

Ulrich Schollwöck

RWTH Aachen

application:
 spin-charge separation in ultracold atom gases in an optical lattice

spin-charge separation

what do repulsive interactions do to an electron gas?
3D: Fermi liquid theory
fermionic quasi-particles
ID: Luttinger liquid theory
\square collective modes of spin and charge
\square spin-charge separation

holon
spinon

spin-charge separation

one dimension
$$
1-1-\theta-f+-f+-f-1+-1
$$
holon
spinon

$$
\begin{aligned}
& \text { two dimensions } \\
& f-f--f-f-f--f-f-f-f \\
& f-1-\Theta-f--f-1-1--f-1 \\
& b-f--f--f-1-f--f-f
\end{aligned}
$$

spin mismatch
prevents separation

single-particle excitation

\square quarter-filled Hubbard chain: U/t=4
\square add spin-up electron at chain center at time $=0$
\square measure charge and spin density
time $=0.2$

time-dependent DMRG
charge
spin
separation of charge and spin
Kollath, US, Zwerger, PRL 95, I7640I ('05)

experimental verification

solid state setup

Auslaender et al, Science '05
interactions
fixed and unknown
ultracold atom setup

array of ID atomic wires (Bloch, Esslinger)
interactions
tunable and known

how?

Kollath, US, Zwerger, PRL ‘05

coexistence of insulator and liquid

\square fermionic Hubbard model

$$
\hat{H}=-t \sum_{i \sigma}\left(c_{i \sigma}^{\dagger} c_{i+1 \sigma}+h . c .\right)+U \sum_{i} n_{i \uparrow} n_{i \downarrow}-\sum_{i} \mu_{i} n_{i}
$$

liquid: charge and spin transport
Mott insulator: only spin transport
harmonic trapping potential spatially varying density

weak interaction

strong interaction

experimental setup: idea

problem: tubes of unequal filling smear signal; need standard

what happens ...

\square charge and spin evolution in time with DMRG
\square absolute precision: better than 0.001 in all quantities
$U / t=4$
time $=0.2$

time-dependent DMRG
charge
spin

... and how to detect it

stills from movie: measurable?

site
experimentally inevitable averaging helps!

summed charge (10 sites)
summed spin (10 sites)
clear evidence of spin-charge separation

how hot are ultracold fermions?

full lattice: fermions in higher Brillouin zone

experiment: Stöferle et al, '05 simulation: Katzgraber et al, ‘05
$T \approx 0.5 E_{\text {Fermi }}$
by far too hot for many strong correlation phenomena
$T \approx 30 \mathrm{~K} \quad T_{\text {Fermi }} \approx 30,000 \mathrm{~K} \quad$ ratio: 0.00 I
escape routes for " $T=0$ " simulations
dramatically enhanced cooling techniques (how?)
\square switch to analogous bosonic problem
\square adiabatic preparation of pure quantum state

SC separation in two-species bosons

Kleine, Kollath, McCulloch, Giamarchi, US, arXiv:0706.0709
\square,,spin"-"charge" separation: low-energy separation of symmetric and antisymmetric combination of two flavours

SU(2) symmetry not essential!
two species of bosons:
\square charge is sum of bosonic densities
\square spin is difference of bosonic densities
competition: interspecies $(A B)$ vs. intraspecies $(A A, B B)$ repulsion phase separation must be avoided! $U_{A B} \leq U_{A A}, U_{B B}$

two-species bosons: movie snapshots

Kleine, Kollath, McCulloch, Giamarchi, US, arXiv:0706.0709
\square single-particle excitation: insert one boson type A
density 0.625/species

SC separation in two-species bosons

Kleine, Kollath, McCulloch, Giamarchi, US, arXiv:0706.0709

\square bosonization analysis: numerics for single-species LL parameters
\square bosonization in good agreement with DMRG, but fails quantitatively in experimentally relevant regime

$$
U_{A B} \approx U_{A A}, U_{B B}
$$

application:

 adiabatic construction of d-wave RVB states in a 2D square lattice
adiabatic pure state preparation

d-wave RVB in the 2D Hubbard model?

\square high- T_{c} superconductors $=$ doped resonating valence bond (RVB) states? (Anderson ‘87)
half-filling (parent compounds):
superposition of singlet coverings

hole-doping: hole pairs condense (BCS)

Gutzwiller-projected BCS wave function: eliminates double occupancies

$$
|\Phi\rangle=P_{G} \prod_{k}\left(u_{k}+v_{k} c_{k \uparrow}^{\dagger} c_{-k \downarrow}^{\dagger}\right)|0\rangle \rightarrow|\Phi\rangle=P_{G}\left(\sum_{i j} a(i-j) c_{i, 1}^{\dagger} c_{j, \downarrow}^{\dagger}\right)^{N / 2}|0\rangle
$$

d-wave symmetry

adiabatic path

Toolbox II: superlattice and ramps

a. One-dimensional optical lattice
b. Superlattice

$$
\begin{gathered}
V(x)=V_{x}^{\prime} \sin \left(k^{\prime} x+\Phi\right) \\
k^{\prime}=k \cos (\theta)
\end{gathered}
$$

- interfere laser beams propagating at angles $\pm \theta$
\square no additional laser frequency
\square modulates hoppings and chemical potential

c. + d. Linear ramp
\square from wing of laser beam

$$
V^{\prime \prime}(x)=V^{\prime \prime} x
$$

4-site Plaquettes

contain d-wave RVB pairs

$$
\begin{aligned}
s_{i, j} & =\frac{1}{\sqrt{2}}\left(c_{i, \uparrow} c_{j, \downarrow}-c_{i, \downarrow} c_{j, \uparrow}\right) \\
\Delta_{d} & \approx \frac{1}{2}\left(s_{1,2}+s_{3,4}-s_{1,3}-s_{2,4}\right)
\end{aligned}
$$

4 electrons on a plaquette: 2 d -wave RVB pairs

$$
|4\rangle \approx s_{1,2}^{\dagger} s_{3,4}^{\dagger}+s_{1,3}^{\dagger} s_{2,4}^{\dagger}
$$

2 electrons on a plaquette: I d-wave RVB pair

$$
|2\rangle \approx \Delta_{d}|4\rangle
$$

Preparing plaquette RVB states

pattern loaded isolated plaquettes

- every other chain empty: $\mu_{\perp} \gg t_{\perp}$
- zero horizontal hopping: $t=0$

true plaquettes
- full interactions
-ground states for 4, 2 atoms

Which path to use to tune $\mu, \mu_{\perp}, t_{\perp}$?

Preparing d-wave RVB states

Coupling of two RVB-plaquettes

Switch on inter-plaquette hopping
Half-filled plaquettes (4+4): large gaps, no problem
\square Doped plaquettes (4+2): problem with reflection symmetry
Initial state is mixture of even and odd state

$$
|4\rangle|2\rangle=\frac{|4\rangle|2\rangle+|2\rangle|4\rangle}{2}+\frac{|4\rangle|2\rangle-|2\rangle|4\rangle}{2}
$$

\square Problem: parity mixture remains throughout evolution!
Solution: break reflection symmetry with potential ramp

Coupling of two plaquettes

WWe WMI kuy pmy

I. turn on potential ramp to break symmetry
2. turn on hopping
3. turn off potential ramp to restore symmetry

Large gaps => short times

doping a half-filled ladder

doping δ : hole pairs "crystallize"
$a_{P}=1 / \delta$
prepare ladder segments separated by empty rungs
\square empty rungs at
preferential hole locations
reduce chemical potential
\square holes appear minimal particle motion
\square phase coherence between ladder parts

DMRG, 2×32 ladder, 56 particles
\square ramping-down speed must decrease
$\square 99 \%$ fidelity in $1 / 2 \mathrm{~s}$

quantum dynamics of mixed states: finite temperature

finite-temperature dynamics

purification
density matrix of physical system:
pure state of physical system plus auxiliary system

$$
\hat{\rho}_{p h y s}=\operatorname{Tr}_{a u x}|\psi\rangle\langle\psi|
$$

\square finite-temperature dynamics

evolution of pure state in enlarged state space

thermal density matrix

auxiliary system: copy of physical system simulate ladders instead of chains
purification of a completely mixed state (infinite temperature)

\square thermal density matrix by imaginary-time evolution of pure state

$$
\hat{\rho}_{\beta}=e^{-\beta H / 2} \cdot 1 \cdot e^{-\beta H / 2}=e^{-\beta H / 2} \operatorname{Tr}_{\mathrm{aux}}\left|\psi_{0}\right\rangle\left\langle\psi_{0}\right| e^{-\beta H / 2}=\operatorname{Tr}_{\mathrm{aux}}\left|\psi_{\beta}\right\rangle\left\langle\psi_{\beta}\right|
$$

$$
\text { purification of } \hat{\rho}_{\beta} \quad\left|\psi_{\beta}\right\rangle=e^{-\beta H / 2}\left|\psi_{0}\right\rangle
$$

real-time evolution of density matrix via pure state

hardcore bosons at finite T

Barthel, McCulloch, US
hardcore bosons, grandcanonical: $H=-\sum\left(b_{i}^{\dagger} b_{i+1}+b_{i+1}^{\dagger} b_{i}\right)-\mu \sum n_{i}$

- $\mu=-2$: quantum phase transition at $\mathrm{T}=0$
local and static quantities (thermodynamics): quasiexact
nonlocal and static quantities (correlators):
$\left\langle b_{n}^{\dagger} b_{0}\right\rangle_{\beta}=c_{1} \sqrt{T / 2} \exp \left(-c_{2} \sqrt{2 T} n\right) \quad c_{1}=0.8676 \ldots \quad c_{2}=0.9528 \ldots$

retarded Green's function at finite T

$$
\langle\psi| b_{i}^{\dagger}(t) b_{j}(0)|\psi\rangle=\langle\psi| e^{+\mathrm{i} H t} b_{i}^{\dagger} e^{-\mathrm{i} H t} b_{j}|\psi\rangle=\langle\psi(t)| b_{i}^{\dagger}|\phi(t)\rangle \quad|\phi\rangle=b_{j}|\psi\rangle
$$

structure function: space-time

structure function at finite T in real space and time

structure function: momentum-frequency

$\beta=10 \quad t_{\text {max }}=35$
relative error <0.0 I
reachable time scales
with inverse temperature: low T easier

conclusion

cold atom toolbox: control and tunability in time

fermions
finite temperature
the best is yet to be!

[^0]: \square bosonic systems: no logarithmic correction

