

Summer School on Novel Quantum Phases and Non-Equilibrium Phenomena in Cold Atomic Gases

27 August - 7 September, 2007

Experiments with an ultracold 6Li-40K mixture

Florian Schreck Center for Quantumphysics (IQOQI), Innsbruck

Feshbach resonances in a Fermionic Mixture of Lithium and Potassium

Florian Schreck

Center for Quantumphysics

hiversität

Austrian Academy of Sciences

ultracold.atoms

Innsbruck

Outline

Fermi physics

Fermi-fermi mixtures

The machine

⁶Li – ⁴⁰K mixture

BEC-BCS crossover

OAW

s-wave scattering length *a* determined by last bound level

scattering length

OAW

Feshbach resonance

s-wave scattering length a as a function of magnetic field B

magnetic moment of bound state differs from the magnetic moment of the incident channel

Forming molecules

ÓAW

Three body collision: (Fulfills energy and momentum conservation)

BEC-BCS crossover

Other fermionic superfluids

superconductors

AW

dense quark matter

exciton condensation

control knobs (single species)

interaction strength

trap parameters:

anisotropy, ellipticity etc. (very flexible!)

physics of polarized Fermi gases

new possibilities in FF mixtures

control of mass ratio

fermion pairing with unequal masses, stable heteronuclear molecules, novel quantum phases ...

independent control of optical potentials

pairing with unequal Fermi surfaces

e.g., small trap of ⁴⁰K in a large trap of ⁶Li or optical lattice for ⁸⁷Sr in a bath of ⁶Li ...

Pairing phases beyond BCS

The machine

Three species atomic beam source

Three-species oven

Strontium atomic beam

Zeeman slower Three color cooling lasers Three species atomic beam source

Sr, 461nm: doubled diode laser

Li, 671nm: dye laser

K, 767nm: diode lasers

MOT beam delivery:

The all-optical way N ~ 10⁹ T ~ 300µK ⁶Li MOT: 3 mm dipole trap: $N > 10^6$ λ/4 3 mm dipole trap (100W 1075nm laser):

dipole trap (100W 1075nm laser): U ~ k_B 1 mK w ~ 60 µm

absorption images of ⁶Li and ⁴⁰K atoms

after 3 s of forced evaporative cooling at 750G

 $\begin{array}{c|c} 26 \ \mu K & trap \ depths & 55 \ \mu K \\ temperature \sim 4 \mu K \\ numbers \sim 10^5 \end{array}$

heteronuclear Fermi-Fermi mixture (stable up to the point where ⁶Li₂ dimers are formed)

Feshbach resonances

Spin states

OAW Austrian Academy of Sciences

Spin states

OAW Austrian Academy of Sciences

Spin states nomenclature

OAW

Spin relaxation

OAW Austrian Academy

Finding Feshbach Resonances

How do we know where they are?

Molecules form at resonance

Decay to lower state in 3-body collision leads to atom/molecule loss:

Measure loss in dependance of magnetic field!

Feshbach resonances

prepare mixture of K|1> and Li |1,2> in IR trap

evaporative cooling at 760 G

RF preparation of K

ramp to B field

Feshbach resonances

losses occur

recapture to MOT and observe remaining fluorescence

What do we learn?

	position [G]	width [G]
$L 2 \neq K 1 $		0.1
L > + K >	157.0	0.1
LI 1> + K 1>	168.2	1.4
Li 1> + K 1>	249.1	10.4
Li 1> + K 2>	16.2	1.4
Li 1> + K 2>	149.2	0.87
Li 1> + K 2>	165.9	0.3
Li 1> + K 2>	262.8	9.8
Li 1> + K 3>	141.7	0.87
Li 1> + K 3>	154.9	1.7
Li 1> + K 3>	162.7	0.87

Theorists Paul Julienne, Eite Tiesinga and Servaas Kokkelmans interpret data

Only two free parameters fit model to data:

position of last bound state in singlet and triplet potential ($\stackrel{\wedge}{=}$ a_s and a_T)

New information from model:

- All Feshbach resonances, also outside the field region and mixtures scanned
- Knowledge of closed channels
- Help to choose optimal resonance for molecule creation

Same mechanisme responsible for molecule formation and decay to lower state: 3-atom collision

Stable Molecules

Why can molecules form and then remain stable?

3-atom collision needs 3 atoms closer than size of endstate

In 2 fermion mixture Pauli principle inhibits two of the three atoms to get close

Big Feshbach molecules can still be formed, but decay to tight last bound

Molecules of Fermions much more stable than molecules of bosons!

Conclusions

first Fermi-Fermi mixture available in the lab!

several interspecies resonances observed !

we'll soon understand the scattering properties

interesting resonance identified for creation of heteronuclear molecules and strongly interacting two-component Fermi gases

Future optical dipole traps

 ΔM

Next steps:

- heteronuclear molecules
- study heteronuclear BEC-BCS crossover

Huge playground beyond BEC-BCS:

- sympathetic cooling of ^{86,87,88}Sr, ^{39,41}K
- 86,88 Sr BEC
- optical Feshbach resonances using Sr intercomb. line

Future

- Bose-Fermi and Bose-Bose mixtures
- three element Fermi mixtures
- ...

