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Quantum statistics and temperature scalesQuantum statistics and temperature scales
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- When T tends to 0 a macroscopic fraction of bosons
occupies a single particle state (BEC)

- Wave function of macroscopically occupied single particle state
defines order parameter

- Actual form of order parameter depends on two-body interaction 
(scattering length) and is described by Gross-Pitaevskii equation

- In the absence of interactions the physics of fermions deeply 
differs from the one of bosons (consequence of Pauli principle)

- Interactions can change the scenario in a drastic way: 
- pairs of atoms can form a bound state (molecule) and give rise to BEC
- pairing can affect the many-body physics also in the absence 
of two-body molecular formation (many-body or Cooper pairing) 
giving rise to BCS superfluidity. 

- In most cases the physics of interacting fermions is characterized by
s-wave scattering length a

Bosons

Fermions



When scattering length is positive weakly bound molecules of size a 
and binding energy are formed

If size of molecules is much smaller than average distance between
molecules the gas is a BEC gas of  molecules

In opposite regime of small small and negative values of a size of pairs
is larger than interparticle distance (Cooper pairs, BCS regime)

In the presence of Feshbach resonance
the value of a can be tuned
by adjusting the external magnetic field
At resonance a becomes infinite
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Many-body aspects (BEC-BCS crossover)

BCS regime
unitary limit

BEC regime
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Interactions provide a continuous link between
the physics of BEC and BCS superfluids

Manifestations of superfluidity:

Macroscopic dynamic phenomena
(expansion, collective oscillations, moment of inertia)
are described by theory of irrotational hydrodynamics

More microscopic theories required to describe
other important superfluid phenomena
(quantized vortices, Landau critical velocity, pairing gap) 

this talk



HYDRODYNAMIC THEORY OF SUPERFLUIDS

Basic assumptions:

- Irrotationality constraint
(follows from the phase of order parameter)

- Conservation laws
(equation of continuity, equation for the current)

Basic ingredient:

- Equation of state



Consequence of Galilean invariance:
from the equation for the field operator 

to the hydrodynamic equations of superfluids

Heisenberg equation for the field operator in uniform systems (Bose field)
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(similar equation for Fermi  field operator) 

If is solution, 

is also solution (Galilean transformation with velocity v)                
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Order parameter (               in Fermi case)                   

acquires phase
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Gradient of the phase S
m

vS ∇= Superfluid velocity
in Fermi case

IRROTATIONALITY of flow is fundamental
feature of superfluids:

- quenching of moment of inertia
- quantization of circulation and quantized vortices)
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Relationship for superfluid velocity and equation for the phase are 
expected to hold also if order parameter varies slowly in space and time 
as well as in the presence of a smooth external potential. 
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Hydrodynamic equations
of superfluids
Closed equations for
density and superfluid
velocity field

HYDRODYNAMIC  EQUATIONS 
AT ZERO TEMPERATURE

irrotationality



- Have classical form (do not depend on Planck constant) 
- Velocity field is irrotational
- Are equations for the total density (not for the condensate density)
- Should be distinguished from rotational hydrodynamics.
- Applicable to low energy, macroscopic, phenomena
- Hold for both Bose and Fermi superfluids
- Depend on equation of state           
(sensitive to quantum correlations, statistics, dimensionality, ...)        

- Equilibrium solutions (v=0) consistent with LDA
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KEY FEATURES OF HD EQUATIONS OF SUPERFLUIDS

What do we mean by macroscopic, low energy phenomena ? 

BEC superfluids
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WHAT ARE THE HYDRODYNAMIC 
EQUATIONS USEFUL FOR ?

They provide quantitative predictions for

- Expansion of the gas follwowing sudden release of the trap

- Collective oscillations excited by modulating harmonic trap

Quantities of highest interest from both
theoretical and experimental point of view

- Expansion provides information on 
release energy, sensitive to anisotropy

- Collective frequencies are measurable with highest precision
and can provide accurate test of equation of state



Collective oscillations: unique tool to explore consequence
of superfluidity and test the equation of state of 
interacting quantum gases (both Bose and Fermi)

Experimental data for collective frequencies
are available with high precision
(recent application to the study of the 

Casimir force, Obrecht et al. 2007))

Collective oscillations in trapped gases



Propagation of sound in trapped gases

In trapped gases sound waves
can propagate if wave length is smaller
than axial size of the condensate. 
Condition is easily satisfied in 
elongated condensates. 

In uniform medium HD theory gives sound wave solution
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Propagation of sound in elongated traps

-If wave length is larger than radial size of 
elongated trapped gas sound has 1D character

where and n is determined by TF eq.                                        

one finds
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For unitary Fermi gas (                 )           3/2n∝µ (Capuzzi et al, 2006)

For BEC gas (                )                                            



Sound wave packets propagating in a BEC (Mit 97)
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Sound wave packets propagating in an
Interacting Fermi gas (Duke, 2006)
behavior along the crossover

BCS mean field

QMC

Difference bewteen BCS and QMC reflects: 
-at unitarity: different value of      in eq. of state
-On BEC side different molecule-molecule scattering length
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Fermions



Collective oscillations in harmonic trap

When wavelength is of the order of the size of the atomic cloud sound 
is no longer a useful concept. Solve linearized 3D HD equations
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Solutions of HD equations in harmonic trap
predict both surface and compression modes

(first investigated in dilute BEC gases (Stringari 96)

is non uniform
equilibrium Thomas Fermi profile
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-Surface modes are unaffected by equation of state

- For isotropic trap one finds where is angular momentum

- surface mode is driven by external potential, not by surface tension

- Dispersion law differs from ideal gas value                    (interaction effect)
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Surface modes
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Surface modes in BEC’s, Mit 2000Bosons



l=2 Quadrupole mode measured on ultracold Fermi gas
along the crossover (Altmeyer et al. 2007)

HD prediction

⊥= ωω 2

Ideal gas value

Enhancement
of damping

Minimum damping near unitarity

Fermions



- Experiments on collective oscillations show that
on the BCS side of the resonance superfluidity is
broken for relatively small values of  
(where gap is of the order of radial oscillator frequency)

- Deeper in BCS regime frequency takes
collisionless value

- Damping is minimum near resonance
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Fermions



Compression modes
- Sensitive to the equation of state

-analytic solutions for collective frequencies available for polytropic
equation of state         

- Example: radial compression mode in cigar trap

- At unitarity (              )  one predicts universal value

- For a BEC gas one finds
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m=0 radial compression    exp:  
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Equation of state along BCS-BEC crossover

- Fixed Node Diffusion MC (Astrakharchick et al.,  2004)
- Comparison with mean field BCS theory ( - - - - - )

Fermions



Radial breathing mode at Innsbruck 
(Altmeyer et al., 2007) 

MC equation of state (Astrakharchick et al.,  2005)

BCS eq. of state
(Hu et al., 2004)
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universal value 
at unitarity

Measurement of 
collective 
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test of  equation of 
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- Accurate confirmation of the universal HD value
predicted at unitarity.

- Accurate confirmation of QMC equation of state on the BEC side of 
the resonance.  

- First evidence for Lee Huang Yang effect (enhancement of frequency
with respect to BEC value (role of quantum fluctuations)

Main conclusions concerning the m=0 radial 
compression mode in superfluid Fermi gases
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Landau’s critical velocity
(beyond HD)

While in BEC gas sound velocity provides critical velocity,
in a Fermi BCS superfluid critical velocity is fixed
by pair breaking mechanisms (role of the gap)



Landau’s critical velocity
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- Landau’s criterion for superfluidity (metastability):
fluid moving with velocity smaller than critical velocity cannot decay
(persistent current)  

- Ideal Bose gas and ideal Fermi gas one has 

- In interacting Fermi gas one predicts two limiting cases:

Dispersion law of 
elementary excitations

BEC (Bogoliubov dispersion)

acvcr ∝=

BCS (role of the gap)
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BEC

B

BEC

unitarity

gap
gap

(Combescot, Kagan and Stringari 
2006)

Dispersion law of density excitations
along BCS-BEC crossover

BCS

gap
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Miller et al. cond-mat/07072354(Combescot, Kagan and Stringar, 2006) 

Landau’s critical velocity

Theory (BCS mean field) Experiment (MIT)
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Landau’s critical velocity is highest near unitarity !!



Some conclusions

- Hydrodynamic theory provides excellent description of 
macroscopic dynamics in trapped superfluid gases

- Superfluidity in Fermi gases is particularly
robust at unitarity (                  ): 
- small damping of collectivemodes; 
- high Landau’s critical velocity

0/1 =akF



- Ultracold atomic Fermi gases
Proceedings of 2006 Varenna Summer School
W. Ketterle,  M. Inguscio, and Ch. Salomon (in press) 

- Many-body physics with ultracold atomic gases
I. Bloch, J. Dalibard and W. Zwerger
cond-mat/0704.3011 (submitted to Rev.Mod.Phys.)

- Theory of Ultracold Fermi gases
S. Giorgini, L. Pitaevskii and S. Stringari
cond-mat/0706.3360 (submitted to Rev.Mod.Phys.)

Recent reviews on ultracold Bose and Fermi gases




