

1859-15

Summer School on Novel Quantum Phases and Non-Equilibrium Phenomena in Cold Atomic Gases

27 August - 7 September, 2007

Pairwise entanglement in 1D spin chains

Luigi Amico University of Catania

Pairwise entanglement in 1d spin chains

Luigi Amico MATIS – INFM & DMFCI Università di Catania

Materials and Technologies for Information and communication Sciences

Outline

- General ideas.
- **Part I**: Bipartite entanglement in the quantum XY chain.
 - Entanglement & QPT
 Summary at T=0
 Thermal Entanglement close to QPT
 - Entanglement & separable states in low dimensional systems
- Part II: Multipartite entanglement in spin chains.

General Ideas: Entangled Vs Not entangled states. **Example: 2 spins (or qubits)** • Pure states: $|\Psi
angle$ Separable: $|\uparrow\rangle \otimes |\downarrow\rangle = |\uparrow\downarrow\rangle$ $(|\uparrow\rangle + |\downarrow\rangle) \otimes |\uparrow\rangle = |\uparrow\uparrow\rangle + |\uparrow\downarrow\rangle$ Entangled: $|\Phi\rangle = |\uparrow\uparrow\rangle + |\downarrow\downarrow\rangle$ $|GHZ\rangle = |\uparrow\uparrow\ldots\uparrow\rangle + |\downarrow\downarrow\ldots\downarrow\rangle$ • <u>Mixed states</u>: $\sum_{i} p_{i} |\psi_{i}\rangle \langle \psi_{i}|$ Separable: $\rho = \sum_{i} p_{i} \rho_{i}^{A} \otimes \rho_{i}^{B}$ **Entangled:** $(1-p)|\Phi\rangle\langle\Phi|+p|\uparrow\uparrow\rangle\langle\uparrow\uparrow|$ $0 \le p < 1$

Classical Vs quantum correlations

• A separable state (not entangled) may contain classical correlation:

$$\rho = \sum_{i} p_{i}(|A, B\rangle \langle B, A|)_{i}$$

= $\frac{2}{4} |\downarrow\downarrow\rangle \langle\downarrow\downarrow| + \frac{1}{4} |\uparrow\downarrow\rangle \langle\uparrow\downarrow| + \frac{1}{4} |\uparrow\uparrow\rangle \langle\uparrow\uparrow$

Measure of B $B = |\downarrow\rangle$

$$\rho = \frac{2}{3} |\downarrow\downarrow\rangle \langle\downarrow\downarrow| + \frac{1}{3} |\uparrow\downarrow\rangle \langle\uparrow\downarrow|$$

Once $B = |\downarrow\rangle$, the probability to find $A = |\downarrow\rangle$ is double than the probability to find $A = |\uparrow\rangle$: **A and B are classically correlated.**

General aim:

Quantify Entanglement in many body systems.

Possible questions:

- Entanglement as a resource (q-compution....)
- Correlation Vs Entanglement
 - Entanglement and Critical phenomena ?

QPT in 1d-Anisotropic XY models

$$H = J \sum_{i} (1+\gamma) \sigma_{i}^{x} \sigma_{i+1}^{x} + (1-\gamma) \sigma_{i}^{y} \sigma_{i+1}^{y} - h \sigma_{i}^{z}$$

• Completely integrable.

• Quantum phase transition at $a_c = .1$ $a = \frac{2h}{J}$ Lieb, Schulz, Mattis Ann. Phy Barouch, McCoy, Dresden PR

Lieb, Schulz, Mattis Ann. Phys.NY 16, 407 (1961); Barouch, McCoy, Dresden PRA 2, 1075 (1970); Barouch, McCoy PRA 3, 786 (1971); Pfeuty Ann. Phys.NY 57, 79 (1970).

Spectrum

Jordan-Wigner:

$$egin{aligned} &\sigma_l^x = A_l \prod_{s=1}^{l-1} A_s B_s & \sigma_l^y = -i B_l \prod_{s=1}^{l-1} A_s B_s & \sigma_l^z = -A_l B_l \ & ext{where } A_l \doteq c_l^\dagger + c_l \,, \quad B_l \doteq c_l^\dagger - c_l \end{aligned}$$

$$H = \sum_{ij} c_i^{\dagger} \mathcal{V}_{ij} c_j + \frac{1}{2} \left(c_i^{\dagger} \mathcal{W}_{ij} c_j^{\dagger} + h.c \right) + \sum_i V_i$$
$$\mathcal{V}_{ij} = -J \left(\delta_{i,j+1} + \delta_{j,i+1} \right) - h \delta_{i,j}$$
$$\mathcal{W}_{ij} = -\gamma J \left(\delta_{i,j+1} - \delta_{j,i+1} \right)$$

$$H = \sum_{k} \Lambda_{k} \eta_{k}^{\dagger} \eta_{k} - \frac{1}{2} \sum_{k} \Lambda_{k} \qquad \qquad \Lambda_{k} = \sqrt{(1 + \lambda \cos k)^{2} + \lambda^{2} \gamma^{2} \sin^{2} k}$$

Correlation functions.

 $g_{
u,
u}(l,m) = \langle \sigma_l^
u \sigma_m^
u
angle \ , \quad
u = x, y, z$

$$\langle \sigma_l^z \sigma_m^z \rangle = \langle A_l B_l A_m B_m \rangle \langle \sigma_l^x \sigma_m^x \rangle = \langle A_l A_{l+1} B_{l+1} \dots A_{m-1} B_{m-1} A_m \rangle$$

Wick theorem:

$$g_{zz}(R) = m_z^2 - G_R G_{-R}$$

$$g_{xx}(R) = \begin{vmatrix} G_1 & G_{-2} & \dots & G_{-R} \\ G_0 & G_{-1} & \dots & G_{-R+1} \\ \dots & \dots & \dots & \dots \\ G_{R-2} & G_{R-3} & \dots & G_{-1} \end{vmatrix}$$
$$G_R = \frac{1}{\pi} \int_0^{\pi} d\phi \left[\gamma \sin(\phi R) \sin \phi - \cos(\phi R) \left(\cos \phi - a\right)\right] \frac{\tanh(\beta \Lambda)}{\Lambda}$$
$$m_z = \frac{1}{2\pi} \int_0^{\pi} d\phi \left(\cos \phi - a\right) \frac{\tanh(\beta \Lambda)}{\Lambda}$$

Cross-over phase diagram for the quantum Ising models

Part I: Entanglement close to QPT

Possible questions:

- Correlation Vs Entanglement?
- Critical properties ?
- Universality ?

Preskill 2000 Arnesen, Bose, Vedral 2001 Gunlicke, Bose, Kendon, Vedral 2001

Selected results at T=0

Pairwise entanglement close to QPT:

Critical change of Concurrence at the quantum critical point. Finite size scaling.

At criticality: In general NO long range Concurrence. Osterloh, Amico, Falci and Fazio, Nature (2002); Osborne, Nielsen PRA 2002.

Selected results at T=O

Second order QPT are marked by <u>singularities in the first</u> <u>derivative</u> of a given entanglement measure; first order <u>QPT are marked by anomalies in the entanglement itself.</u> Wu, Sarandy, Lidar Phys. Rev. Lett. 2004; Wu, Sarandy, Lidar, Sham 2005. Yang 2005; Gu, Tian, Lin 2005. See also: Verstrate, Popp, Cirac

2004; Jin, Korepin 2004.

 $H = H_0 + \sum_l \lambda_l A_l$, The reduced density operator is a function of correlators. Then

$$M(\langle A_l \rangle) = M\left(\frac{\partial E_{gs}}{\partial \lambda_l}\right)$$

Entanglement crossover

• How is the entanglement affected by the combinations of thermal and quantum fluctuations?

Temperature is a strong effect in the quantum critical region and around T_M

Separable ground states in low dimensional systems

$$H(j_x, j_y, j_z) = \sum_i j_x S_i^x S_{i+1}^x + j_y S_i^y S_{i+1}^y + j_z S_i^z S_{i+1}^z - h S_i^z$$

The ground state is factorized in real space at

$$h = h_f = \sqrt{(j_x + j_z)(j_y + j_z)}$$

Kurman, Thomas, and Muller (1982); 2d: Roscilde, Verrucchi, Fubini, Haas, Tognetti 2005

Explanation of Kurman's result

$$C_{r} = 2\max\{0, C_{r}^{I}, C_{r}^{II}\}$$

$$C_{r}^{I} = |g_{r}^{xx} + g_{r}^{yy}| - \sqrt{(\frac{1}{4} + g_{r}^{zz})^{2} - M_{z}^{2}}$$

$$C_{r}^{II} = |g_{r}^{xx} - g_{r}^{yy}| + g_{r}^{zz} - \frac{1}{4}$$

 \neg

0

Amico, Baroni, Fubini, Patane', Tognetti, Verrucchi 2006.

Factorization at finite temperature

Part II: Multipartite entanglement in spin chains

Quantum Phase Transition:

Enhancement of multiparticle entanglement G. Vidal et al., Phys.Rev.Lett. 90, 227902 (2003); T. Roscilde et al., Phys. Rev. Lett. 93, 167203 (2004).

Simulations of strongly correlated systems:

- Failure DMRG for unbounded block entangl. (i.e. 1D critical systems or D>2).
- New algorithms taking into account long range entanglement (i.e. PEPS, graph states..)
 G. Vidal Phys. Rev. Lett. 93, 040502 (2004); F. Verstraete and J. I. Cirac; cond-mat/0407066; G. Vidal, cond-mat/0512165; S. Anders, Phys. Rev. Lett. 97, 107206 (2006).

AREA LAW

The information of a subsystem about the rest can be quantified by $S = -tr(\rho_A \ln \rho_A)$ When the area law holds:

 $S \sim \ell^{d-1}$

Sredniki 1993; Fiola, Preskill, Strominger, and Trivedi 1994; Holzhey, Larsen and Wilczek 1994.

In d=1 S is independent on the block size

For short range interactions this holds for gapped systems.

$$S = \frac{c}{3} \log_2 \frac{\xi}{a} \quad \text{for} \quad \ell \to \infty$$

Violation of the area law for gapless systems: log corrections appear with a universal prefactor

$$S = \frac{c}{3}\log_2\left[\frac{L}{\pi a}\sin\frac{\pi}{L}\ell\right] + A$$

(Vidal, Latorre, Rico, Kitaev 2003; Calabrese and Cardy 2004-06; Its, Jin, Korepin 2005).

Analysis of the block entanglement

Motivations: analysis of one-tangle and block entropies reveal multipartite entanglement....BUT: *How is it shared*?

•**Strategy**: Search for configurations / regimes where the two-particle entanglement is known to vanish.

Example for three spin entanglement:

i) If the spin are distant enough then there is *no two-spin* entanglement....

a) ... ii) Then, pairwise entanglement between suitably distant blocks is a measure of genuine multiparticle entanglement.

Patane', Fazio, Amico, 2007

Multi spin entanglement in the ground state of the quantum XY models

Spin/block entanglement without spin-spin entanglement for distance d=4.

Entanglement survives following a 'microscopic' to 'macroscopic' hierarchy.

Amico, Fazio, Patanè 2007

Bound Entanglement in quantum XY models

Bound entanglement: entanglement that cannot be distilled.

Important to understand the interplay between entanglement and local realism
Useful for certain protocols, but difficult to construct.

Bound entanglement in quantum spin chains at finite temperature

...T.T.T.T.T... Next C1 ...T.T.T.T... Ncentr Bound Entanglement.

FIG. 3: Entanglement shared in a block of the three adjacent spins. We consider $\gamma = 1$. In this case only nearest neighbor and next nearest neighbor spins are entangled (hence R = 2) at T = 0 [3, 4]. The lines in the T - h plane indicate the temperatures at which the corresponding type of entanglement disappears. In the marked region $T_{N_{Ext}} < T < T_{N_{Centr}}$ BE is present.

Conclusions

- Entanglement is sensitive to quantum criticality: similarities & differences with the ordinary correlators.
- Entanglement Crossover: quantum distilled of the mechanism bringing quantum effects up to finite temperatures.
- New light on traditional problems in condensed matter (Es: Kurman factorization; string-order parameter...).
- Entanglement propagation.
- Bound-entanglement in spin chains.

Amico, Fazio, Osterloh, and Vedral, quant-ph/0703044; to be published in Rev. Mod. Phys.