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Abstract

These lecture notes cover the material presented at the ICTP Trieste, for the summer school “Novel
Phases and Non-equilibrium Phenomena in Cold Atomic Gases”, and give an introduction to experiments
with a dipolar quantum gas, namely a BEC of Cr atoms. After a short discussion on the experimental
realization of such a gas, emphasis is put on two interesting aspects of dipolar gases: dipolar relaxation,
which prevents BEC of Cr in a magnetic trap but can be used for cooling a cloud of thermal atoms, and the
anisotropic expansion of a dipolar BEC.

1 Introduction

Interactions play a crucial role in the physics of quantum gases (see, e.g., [1]). Usually they are isotropic and
short-range, and proportional to the scattering length a of the atoms. The interatomic potential for this contact
interaction can then be taken as :

Ucontact(r) =
4π~2a

m
δ(r) ≡ gδ(r). (1)

With the dipolar interaction, it is possible to study quantum gases interacting via a long range and anisotropic
potential

Udd(r) =
Cdd

4π

1− 3 cos2 θ

r3
, (2)

where Cdd is the dipolar coupling constant (Cdd = µ0µ
2 for magnetic moments µ, Cdd = d2/ε0 for electric

dipole moments d), and θ the angle between direction joining the two dipoles and the dipole orientation (we
assume here that all dipoles are aligned along the same direction z).

Problem 1: Show by dimensional analysis that, for a gas with both contact and dipolar interactions, one can
build a dimensionless parameter εdd quantifying the relative strength of both interactions, in which no length scale
appears. We’ll see later (problem 5) why it is convenient to choose the numerical factors in εdd in the following
way:

εdd ≡
Cddm

12π~2a
, (3)

such that a homogeneous BEC with εdd > 1 is unstable.

2 Which dipolar gases?

One can think of two kinds of particles to realize experimentally a dipolar quantum gas: molecules having a
permanent electric dipole moment d, or atoms having a large magnetic moment µ (I will not talk here about
other, slightly different possibilities like using induced electric dipole moments in atoms).

2.1 Molecules

Heteronuclear molecules in their ground state can have large dipole moments, on the order of a few Debye
(1D ' 3.3× 10−30 C ·m). For scattering lengths comparable to atomic ones, this yields εdd values in excess of
102. Such a dipolar quantum gas would therefore be completely dominated by dipolar effects; however, BECs
of heteronuclear molecules in their ground state are not available to date1.

1This might change soon with the many new experiments on mixtures of different species of fermions: using Feshbach resonances
to create molecules and then transferring the molecules in their ground state could result in a dipolar molecular BEC. Let’s mention
also some molecule cooling techniques such as Stark deceleration or buffer-gas cooling, which have also the achievement of a dipolar
BEC as one of their long-term goals.
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2.2 Chromium

To date, the only quantum gas to display measurable dipolar effects is the Chromium BEC obtained in Stuttgart
in 2004. Chromium has a large magnetic dipole moment of 6µB, and a scattering length of about 100a0 (a0 is
the Bohr radius). This gives εdd ' 0.16, which allows to observe a perturbative effect of the dipolar interaction.

Problem 2: Evaluate the value of εdd for 87Rb atoms (the most common species for BEC experiments, having

µ = µB and a scattering length a ' 5 nm).

2.2.1 BEC of Chromium

In this section, I give a very brief overview of the experimental sequence used to obtain a 52Cr BEC. More
details can be found for example in [2].

The specific level structure of chromium makes it possible to use novel laser cooling strategies to load atoms
continuously into a magnetic trap. After Doppler cooling in the magnetic trap, we get a cloud of 1.5×108 atoms
at a temperature of a few hundreds of µK. RF-induced evaporative cooling is then performed. However, dipolar
relaxation from the low-field-seeking state |7S3, mS = +3〉 towards lower mS states prevents condensation (see
section 3.1).

The cloud (with 6×106 atoms at about 20 µK) is thus transferred into a crossed optical dipole trap (50 W at
1070 nm), and atoms are optically pumped to the high-field-seeking state |7S3,mS = −3〉, which is the absolute
ground state; with a magnetic field of a few Gauss, dipolar relaxation is thus energetically suppressed. Forced
evaporative cooling in the dipole trap then yields a pure condensate with up to 105 atoms.

2.2.2 Feshbach resonances in Chromium

Besides its large magnetic moment, Cr has another asset: 14 Feshbach resonances have been observed [3] for
atoms in the state |7S3,mS = −3〉. Close to such a resonance, the scattering length varies with the applied
magnetic field B as

a(B) = abg

(
1− ∆

B −B0

)
. (4)

Here, B0 is the resonance position, ∆ its width, and abg the background (non-resonant) scattering length. This
yields the possibility of increasing εdd by making a approach zero. For this, one needs to control the magnetic
field B with a precision much better than ∆. The broadest known Feshbach resonance of Cr lies at B0 = 589 G,
and has a width of ∆ = 1.4 G. The small value of ∆/B0 ' 2.3× 10−3 implies that one needs a good control of
the field (. 10−4) to tune a accurately.

3 Dipolar relaxation: enemy or ally?

3.1 Losses

One of the various types of two-body inelastic losses2 arising in ultracold cloud of atoms is dipolar relaxation,
i.e. a change in the spin projection of one or two of the colliding atoms, induced by the magnetic dipole-dipole
interaction (2). Indeed, unlike e.g. spin-exchange collisions, which preserve the total spin, the anisotropic
character of the MDDI allows for a change of the spin projection (only the total angular momentum, including
the orbital part, needs to be conserved in the collision).

One can show that, within the Born approximation, the cross section for a single spin flip scales as S3, where
S is the spin of the atoms. Thus, although negligible for alkali atoms, dipolar relaxation is a very efficient loss
mechanism for Chromium 52 (S = 3). Relaxation from the low-field seeking state (thus magnetically trapped)
|mS = +3〉 to the lower energy states |mS < +3〉 prevents condensation of Cr in a magnetic trap (the dipolar
relaxation coefficient is β ∼ 10−12 cm3/s at low magnetic fields [4]). This can be circumvented by using an
optical dipole trap (which traps all spin states) and optically pumping the atoms to the absolute ground state
|mS = −3〉; with a high enough magnetic field µB À kBT , dipolar relaxation is energetically suppressed and
BEC can be achieved.

2Three-body losses are also of course important at large densities.
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Figure 1: Left: Principle of demagnetization cooling. Right: temperature reduction in a single demagnetization cooling step.
Figure taken from [5].

3.2 Demagnetization cooling

Theory. Dipolar relaxation introduces a coupling between spin and external degrees of freedom. It can thus
be used to cool an atomic cloud by letting a sample, initially polarized in the lowest energy state (in a field
B0 À kBT0/µ, where T0 is the cloud temperature), relax towards full thermal equilibrium at a field B1 ∼ kBT0/µ:
energy is then absorbed by the spin reservoir at the expanse of the kinetic energy (see figure 1). The temperature
of the sample thus decreases, by an amount which can be up to a few tens of percents. By optical pumping, the
sample can be polarized again, and a new cycle can begin.

Problem 3: Toy model of single-step demagnetization cooling. Consider a thermal cloud of spin 1/2
atoms (with a Landé factor g = 2), in a harmonic trap.

(i) Show that at temperature T and magnetic field B, the internal energy per particle (due to spin degrees of
freedom) is Uspin = −µBB tanh[µBB/(kBT )].

(ii) What is the energy per particle due to the center of mass motion in the harmonic trap (hint: use the
equipartition theorem)?

(iii) One starts with a gas sample at temperature T0, in a field B0 À kBT0/µB, polarized in the lowest energy
spin state. One then reduces the field to the value B1. Find the new temperature T1 of the system after
dipolar relaxation to equilibrium, as the solution of a transcendental equation. Plot T1/T0 as a function of
2µBB1/(kBT0), and show that you recover the result of figure 1 (dash-dotted line).

In practice, one can use a continuous cooling scheme, with the optical pumping light always on, and a ramp
in magnetic field. The interested reader is referred to [5] for details. This cooling mechanism is obviously
reminiscent of the well-known adiabatic demagnetization used in solid state physics to cool down paramagnetic
salts3.

Experimental realization. This scheme has been successfully applied to Cr, allowing for a division of the
cloud temperature by a factor of two (from 20 to 11 µK), with almost no atom loss [6]. This cooling is therefore
much more efficient than evaporative cooling, where the decrease in atom number is large. An important figure
of merit for cooling schemes in view of obtaining quantum degeneracy is the gain χ in phase-space density ρ
per atom loss:

χ ≡ − d ln ρ

d ln N
. (5)

For evaporative cooling, χ is limited in practice4 to values about 4. In [6], the measured efficiency of demagne-
tization cooling reached χ ' 11.

The practical limitation in view of achieving lower temperatures lies essentially in the control of the polar-
ization of the optical pumping light, as any residual σ+ component yields a heating of the cloud. Note, however,
that the recoil temperature should be attainable in principle with this technique.

3In a solid at low temperature, the specific heat of phonons is very small, making it possible to cool a sample by orders of
magnitude in a single step.

4Using a higher evaporation threshold increases χ, but the evaporation time then increases prohibitively.
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4 Dipolar expansion

The most spectacular effect of the magnetic dipole-dipole interactions (MDDI) on the Cr BEC in an anharmonic
trap appears in time of flight experiments. The aspect ratio of the cloud during expansion is modified by the
MDDI and depends on the orientation of the atomic dipoles with respect to the trap axes. In this section I first
give a summary of the theoretical tools used to describe such experiments, and then describe our results.

4.1 GPE for dipolar gases

Pure contact interaction: a reminder. Let’s recall that weakly interacting BECs with pure contact
interaction are well described by the Gross-Pitaevskii equation (GPE) for the order parameter ψ(r, t):

i~
∂ψ

∂t
= − ~

2

2m
4ψ +

(
Vext + g|ψ|2)ψ. (6)

The non-linear term proportional to g accounts for the effect of interactions within the mean-field approximation.
Note also that in the time-independent case, the left-hand side of the above equation has to be replaced by µψ,
with µ the chemical potential. The normalization of ψ chosen here is

∫ |ψ|2 = N , where N is the total atom
number.

A useful reformulation of the Gross-Pitaevskii equation is obtained by writing ψ =
√

n exp(iS), with n the
atomic density and S the phase of the order parameter, related to the superfluid velocity field by v = (~/m)∇S.
Substituting in (6) and separating real and imaginary parts one gets the following set of hydrodynamic equations:

∂n

∂t
+ ∇ · (nv) = 0, (7)

the equation of continuity, and an Euler-like equation:

m
∂v

∂t
+ ∇

(
mv2

2
+ gn + Vext − ~2

2m

4√n√
n

)
= 0. (8)

Problem 4: Bogoliubov spectrum. For the case of a uniform condensate (Vext = 0), show, by linearizing the
hydrodynamic equations around equilibrium, that the frequency ω and wavevector k of a harmonic perturbation
are linked by the following dispersion relation:

ω = k

s
gn

m
+
~2k2

4m2
. (9)

Dipolar interaction. To include dipolar effects, one just needs5 to add an extra term to the mean-field
potential g|ψ|2, namely

Φdd(r, t) =
∫
|ψ(r′, t)|2 Udd(r − r′) d3r′. (10)

This extra term is thus non-local (due to the long-range character of the MDDI) and makes it much more
complicated to solve the GPE, even numerically (one faces now an integro-differential equation).

Problem 5: Phonon instability for εdd > 1. Show the following identity:

1− 3z2/r2

r3
= − ∂2

∂z2

1

r
− 4π

3
δ(r). (11)

Using this result, prove that the Fourier transform of the dipolar interaction (2) isdUdd(k) = Cdd(cos2 α− 1/3), (12)

where α is the angle between k and the direction of the dipoles. Following the same method as in the previous
problem, show that the excitation spectrum is now given by

ω = k

s
n

m

�
g +

Cdd

3
(3 cos2 α− 1)

�
+
~2k2

4m2
, (13)

and that, with the definition (3) for εdd, this implies that a dipolar uniform condensate is unstable for εdd > 1.

5At least as long as the MDDI strength is not too high.
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Figure 2: Left: density distribution for a non-dipolar BEC in an isotropic trap. Right: the resulting dipolar potential Φdd has a
saddle-like shape, which tends to elongate the condensate along the magnetization direction. Figure taken from [8].

4.2 Thomas-Fermi solutions and scaling Ansatz for the expansion

Static Thomas-Fermi solutions. For pure contact repulsive interaction, when the atom number is large,
the condensate size increases and the zero-point kinetic energy becomes smaller and smaller. The Thomas-Fermi
approximation consists in neglecting the kinetic energy term in the time-independent GPE; this gives then a
simple algebraic equation, showing that the density distribution has the shape of an inverted parabola.

It is remarkable that this property remains valid if dipolar interaction is included. This comes from the fact
that the dipolar mean-field potential Φdd(r) for a parabolic density distribution n(r) = |ψ(r)|2 is quadratic in
the coordinates (having a saddle shape because of the anisotropy). The proof of this property (which is not as
trivial as it may seem) is left as the following problem.

Problem 6: Using the result (11), prove that

Φdd(r) = −Cdd

�
∂2

∂z2
φ(r) +

1

3
n(r)

�
, where φ(r) =

Z
n(r′)

4π|r − r′| d
3r′. (14)

The last equality shows that the “potential” φ fulfills 4φ = −n. Deduce from this the most general form of φ

when one has a parabolic density distribution n(r) = n0(1 − x2/R2
x − y2/R2

y − z2/R2
z). Prove finally that Φdd

has a parabolic shape. Using Gauss theorem, work out the exact expression of Φdd(r) for a spherically symmetric

inverted parabola density distribution (figure 2).

For the case of a spherically symmetric trap (and thus also a spherically symmetric density distribution for
pure contact interaction), one can easily show that, to first order in εdd, the effect of the MDDI is to elongate
the condensate along the direction of magnetization: it is energetically favorable to accommodate new particles
close to the magnetization axis, where Φdd(r) is minimum (see figure 2), thus causing an elongation of the
condensate. It is possible to show that this behavior is valid for anisotropic traps and for higher values of εdd.
Note however that for a non-spherical density distribution, calculating the coefficients of the quadratic terms in
Φdd is possible but very complicated, and beyond the scope of these notes. See [7] for details.

Expansion: scaling Ansatz. For a pure contact interaction, and in the Thomas-Fermi approximation
(Na/aho À 1, with aho =

√
~/(mω̄)), there exists a very useful solution of the GPE6. It shows that the

inverted parabola shape of the condensate is maintained upon expansion (after release from the trap), with a
mere rescaling of its radii. The scaling parameters bi(t) (i = x, y, z) giving the radii Ri(t) = Ri(0)bi(t) are
solutions of the ordinary differential equations

b̈i =
ω2

i (0)

bi

∏

j∈{x,y,z}
bj

(i ∈ {x, y, z}). (15)

Like for the static case, this can be extended to the case of dipolar interactions, since Φdd keeps a parabolic
shape. The corresponding equations now read

b̈i =
ω2

i (0)

bi

∏

j∈{x,y,z}
bj

+ f({bj}; {ωj}; εdd) (i ∈ {x, y, z}), (16)

6Y. Castin and R. Dum, Phys. Rev. Lett. 77, 5315 (1996); Yu. Kagan, E. L. Surkov, and G. V. Shlyapnikov, Phys. Rev. A
54, R1753 (1996).
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Figure 3: MDDI as a small perturbation in the expansion of a condensate. The aspect ratio is measured during expansion for
two different orientations of the dipoles with respect to the trap axes. Figure taken from [8].

where f is a complicated function of the scaling radii, trap frequencies, and dipolar parameter εdd. It turns out
that the elongation of the condensate along the magnetization direction remains valid during expansion. The
reader is again referred to [7] for further details.

4.3 Experiments

4.3.1 MDDI as a small perturbation

The first demonstration of an effect of the MDDI in a quantum gas came soon after the first realization of a Cr
BEC, by measuring the aspect ratio of the BEC during time-of-flight for two different orientations of the dipoles
with respect to the trap axes. The small value εdd ' 0.16 implied that the effect was only a small perturbation
on top of the expansion driven by the contact interaction (see figure 3).

4.3.2 Use of the Feshbach resonance

To go beyond this perturbative effect, we used the 589 G Feshbach resonance of Cr, in order to reduce a, and
thus enhance εdd. We provide this field using the offset coils of the magnetic trap, with a current of about
400 amperes, actively stabilized at a level of 4 × 10−5 in relative value (peak to peak). The field is switched
on during the evaporation sequence in the ODT, at a stage when the density is not too high, in order not to
lose too many atoms by inelastic losses when crossing the Feshbach resonances. The rest of the experiment is
performed in high field. After a BEC is obtained, we ramp the field close to the resonance in 10 ms, hold the
field there for 2 ms, and take an absorption picture (still in high field) after 5 ms of time of flight.
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hydrodynamic equations in the Thomas-Fermi limit. Figure taken from [9].
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d: εdd = 0.75, the inversion of ellipticity of the cloud is inhibited by the MDDI. Figure taken from [9].

From the density distribution, we measure the Thomas-Fermi radii of the BEC, and we infer the value of
the scattering length (taking into account explicitly the MDDI interaction by solving equations (16)). The
measured a is shown on Fig. 4 (A). One can see clearly a five-fold reduction of a above resonance, corresponding
to a maximal value of εdd ' 0.8. On the sample absorption images of Fig. 4 (A), one clearly sees, when B
approaches B0 + ∆, a strong reduction of the BEC size, due to the reduction of a, and thus of the mean field
energy released upon expansion7. But one also clearly observes an elongation of the BEC along the magnetic
field direction z. This change in the cloud aspect ratio would not happen for a pure contact interaction and is a
direct signature of the MDDI. Fig. 4 (B) shows the aspect ratio of the cloud as a function of εdd, together with
the theoretical prediction from (16).

As an application of the tunability of εdd, we measured the aspect ratio of the BEC during expansion for
two different orientations of the dipoles with respect to the trap axes (as in the section 4.3.1). The effect of
MDDI is now way beyond the perturbative regime (figure 5). For large enough εdd, one clearly sees that the
usual inversion of ellipticity of the BEC during expansion is inhibited by the MDDI.

5 Outlook

These lecture notes concentrated on properties of ultracold dipolar gases that have been already explored
experimentally. On the theoretical side, many phenomena have been predicted, a short (and incomplete8) list
of the studied subjects being:

• collective oscillations of dipolar BECs (frequency shifts due to MDDI predicted),

• equilibrium shape of the BEC in a harmonic trap (structured density profiles predicted),

• stability of the condensate (predicted to depend on the trap geometry, e.g. aspect ratio),

• rotating dipolar gases (with exotic vortex lattices predicted),

• low-dimensional dipolar gases (with e.g. new dispersion relations of excitations predicted),

• non-linear physics of dipolar gases (e.g. stable two-dimensional solitons predicted),

• dipolar fermi gases (new pairing mechanisms predicted),

7For a pure contact interaction, the TF radius after expansion scales as (Na)1/5.
8See the lecture by Luis Santos for more details on the theoretical activities regarding dipolar quantum gases.
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• dipolar quantum gases in optical lattices (new exotic quantum phases predicted, such as checkerboard or
supersolid phases).

The field of ultracold dipolar gases thus remains barely explored experimentally, and many new exciting exper-
iments are yet to come.

Acknowledgements

I thank the organizers of the summer school for giving me the opportunity to give these lectures in replacement of
Tilman Pfau, and all my colleagues at the 5. Physikalisches Institut, Universität Stuttgart, for their contribution
to my understanding of dipolar gases.

? ? ?

If you want to get the detailed solutions of the small problems given in these lecture notes, please send me
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Experiments with dipolar quantum gases



Interacting quantum systems in AMO physics

Contact interaction

Short range
Isotropic

Coulomb interaction

Long range
Isotropic

Dipole interaction

Long range
Anisotropic

Attractive

Repulsive



New physics in dipolar quantum gases

Dipole-dipole interactions are:

- anisotropic

- trap geometry-dependant stability
- modified dispersion relation 

for elementary excitations (roton)
- new equilibrium shapes 

- long range

- new quantum phases in optical lattices
- supersolid
- checkerboard 

pancake

For an overview, see: 

M. Baranov et al., Physica Scripta T102, 74 (2002) + talk by Luis Santos this morning.
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Dipolar systems in practice

Strength of the magnetic dipole-dipole interaction (MDDI):  

Heteronuclear molecules
(electric dipole moment d )

Large d (~1 Debye): 

No BEC yet 

Atoms with large magnetic 
dipole moment µ.

Chromium: 6µB.

BEC achieved

Small εdd… but a tunable



Chromium level scheme

7S3

5D4

7P3

7P4

MOT
425 nm   

Repumper
663 nm

mS = +3

mS = –3

52Cr: boson, no hyperfine structure
S = 3 in ground state: µ = 6µB. 



Chromium BEC

i. Continuous loading of a Ioffe-Pritchard 
trap.

ii. RF evaporation.

iii. Transfer to crossed ODT (50 W @ 1070 
nm), optical pumping, and forced 
evaporation.

iv. 105 atoms in BEC!

A. Griesmaier et al., PRL 94, 160401 (2005).



Feshbach resonances in Cr
Tuning of the scattering length 
with an external magnetic field:

 

 

  

Feshbach resonances in Chromium [J. Werner et al., PRL 94, 183201, (2005)]

Broadest resonance at 589.1 G (∆ = 1.4 G):

Field stability better than 10-4 required!
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Dipolar relaxation

mS = +3 mS = +3 mS = +3 mS = +2

S. Hensler et al., Appl. Phys. B 77, 765 (2003).

The dipolar interaction Udd can induce spin flips:

Cross-section proportional to S 3: huge loss mechanism for magnetically
trapped 52Cr (S = 3).

Loss rate : β = 10–12 cm3/s.

Prevents BEC in mS = +3. 
Solution: optical trap, pump atoms in mS = –3 and keep a field µΒB >> kBT.



Demagnetization cooling: principle
(i) Start with all atoms 

in mJ = – J, at large 
field µΒB0 >> kBT0.

(iii) Apply optical 
pumping pulse to 

polarize again the cloud.

During step (ii), energy is conserved:

– gJ mJµB B + 3 kBT0 = 3 kBTeq + Uspin(B / Teq)

→ Teq < T0 : Cooling!

(ii) Reduce the field to 
µΒB ~ kBT0. Dipolar 

relaxation reduces Ekin.

Dipolar
relaxation

Scheme already discussed by Alfred Kastler (“effet lumino-frigorique”).
A. Kastler, J. Phys. Radium 11, 255 (1950). 



Demagnetization cooling: principle

S. Hensler et al., Europhys. Lett. 71, 918 (2005).

Temperature reduction for a single step:

A continuous scheme with a ramp in B and the optical pumping light 
always on is possible.

Lower limit on T: ~ recoil limit (1 µK for 52Cr).



Demagnetization cooling: experiment

M. Fattori et al., Nature Physics 2, 765 (2006).

Continuous cooling:
B ramped down linearly from 
250 mG to 50 mG over 7 s

Cooling efficiency

χ = 11 

(χ ~ 4 in practice
for evaporative cooling)

Single step:
B jumps from 1 G to 50 mG

Temperature limit

10 µK experimentally: 
(difficult to control the  
σ – polarisation of the 
optical pumping for 
very low B ~ 50 mG).
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Gross-Pitaevskii equation with MDDI

Interactions: non-linear term

Contact interaction Dipolar interaction

Equation for the order parameter:



Elongation of the BEC along the field
The MDDI elongates the BEC along the magnetization direction

Mean-field potential due to dipole-dipole interactions:

Saddle-shape potential
→ It is energetically favorable to accommodate atoms close to the z-axis.

Assume a spherical trap, and that εdd is small. To zeroth order, the density is then 
the usual inverted parabola:

This conclusion remains valid:
for anisotropic traps,
for arbitrary εdd,
during time-of-flight.



BEC expansion with a small dipolar perturbation

How to go beyond this perturbative effect? Feshbach resonance!

J. Stuhler et al., Phys. Rev. Lett. 95, 150406 (2005).



Modified experimental setup

Uniform field ~ 600 G
offset 400 A + pinch 15 A (for curvature compensation) 

current actively stabilized at the 4 × 10-5 level (peak to peak)

fast switching (2 ms)

Absorption imaging in high field
avoids to switch off B during time of flight 

O
ff

se
tCrossed ODT

z
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O
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Experimental sequence

time

M
ag

ne
tic

 fi
el

d
P h

or
iz

. b
ea

m

Bevap2 ms

Forced evap.
BEC

Shape trap (50 ms)

B0

Ramp to B (10 ms)

5 ms
tof

Hold (2 ms)



Tuning the scattering length

Without MDDI: 
measure a through 
the released energy

a ~ R5 / N

Correction to take into 
account the MDDI.



Aspect ratio vs. εdd

Dipole-dipole interactions: elongation along     . 

Hydrodynamics prediction
(no adjustable parameter)

T. Lahaye et al., Nature 448, 672 (2007).



Time of flight experiments for various εdd

εdd = 0.16

εdd = 0.16

εdd = 0.50

εdd = 0.75

Inhibition of 
the inversion 
of ellipticity!

T. Lahaye et al., Nature 448, 672 (2007).
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Contact interaction: BEC collapse for a < 0

Uniform case: a BEC with a < 0 is unstable.

In a trap: a BEC with a < 0 cannot accommodate more atoms 
than the critical value (for an isotropic trap)

Experiments: 7Li (Hulet’s group) and 85Rb (Wieman’s group)

Simple model: Gaussian Ansatz



Dipolar collapse
The stabiltiy of a dipolar BEC depends on the trap geometry

Aspect ratio:

Pancake-shaped trap:

MDDI effectively repulsive: 
stable

Cigar-shaped trap:

MDDI effectively attractive: 
unstable



Experimental setup

Superimpose a long-period optical lattice onto the ODT
z

θ = 8°

• Monomode fibre laser at 1064 nm (IPG), up to 20 W.

• Lattice period 7 µm. 

• Extra radial confinement by ODT.

• Vary trap aspect ratio λ from 1/10 (no lattice) to 20.

• Load one or two sites.



Onset of instability for different traps
Prepare BEC in a trap with given λ and then decrease a

-10 0 10 20 30 40

0,1

1

 
 

 

 

N 
/ N

0

Scattering length [a0]

Qualitatively as expected: the more pancake, the more stable.

For all traps:

Initial N0 = 20,000

Preliminary data!



A simple (the simplest) model

How to find easily the critical value acrit for instability?

→ Gaussian Ansatz
• Variational parameters: axial and radial widths. N, a, ωρ, ωz fixed.

• Calculate the Gross-Pitaevskii energy functional.

• Find the value of a for which no local minimum exists: this defines acrit.



Geometry-dependent stability
acrit vs trap aspect ratio 

(N = 20,000 atoms;                              )
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Preliminary data!

εdd = 1



Outlook

• Dynamics of the collapse

• Elementary excitations in a pancake trap 
Roton minimum

• Effects of MDDI in a double-well geometry

• Three-dimensional optical lattice: towards new quantum phases
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