

1859-26

Summer School on Novel Quantum Phases and Non-Equilibrium Phenomena in Cold Atomic Gases

27 August - 7 September, 2007

Experiments with Fermi gases in the BEC/BCS crossover - Part I

Randy Hulet Rice University, Houston

Experiments with Ultracold Fermions

Guthrie Partridge Kevin Strecker Michael Jack Wenhui Li Andrew Truscott Yean-an Liao Ramsey Kamar

Henk Stoof Utrecht University

Outline

<u>Part 1</u>

• Introduction to methods and concepts of cold atom physics

• BEC-BCS crossover with fermions

- microscopic physics of pairing
- universal energy of interaction for a unitary gas

<u>Part 2</u>

• Pairing with unequal spin populations

Quantum Gases

• Quantum regime $n\Lambda^3 \ge 1$

n = density Λ = de Broglie wavelength

Identical particles!

- Gas phase $n \approx 10^{12} \text{ cm}^{-3}$
- Low temperature $T \approx 100 \text{ nK}$
 - $\Rightarrow \Lambda \approx 1 \ \mu m$
- Phase transitions
 - Bosons (⁷Li):
 - Fermions (⁶Li):

Bose-Einstein condensation

Fermion pairing

Lithium: Non-identical Twins

⁷Li

3 e's, 3 p's, 4 n's
 = 10 spin-½ particles
 ⇒ Boson

3 e's, 3 p's, 3 n's
 = 9 spin-½ particles
 ⇒ Fermion

6L

• 94% abundance

• 6% abundance

Methods

- Laser cooling
 T ≈ 100 µK
- Evaporative cooling
 T ≈ 100 µK → 10 nK

• Atom trapping $n \approx 10^{12} - 10^{14} \text{ cm}^{-3}, \quad N \approx 10^9 \rightarrow 10^6$ trapping times ~ 1 minute

Optical imaging

Imaging System

Evaporative Cooling of Fermions

- Evaporative cooling requires rethermalizing collisions
- Pauli principle forbids s-wave interactions between identical fermions

 $\Psi(1,2) = \psi_{\text{spatial}} \chi_{\text{spin}}$ must be antisymmetric but $\psi_{\text{spatial}} = (-1)^{\ell} = +1$ for *s*-wave collisions

Other solutions: - Spin-state mixture in optical trap (JILA, Duke, Innsbruck) - BEC of sodium (MIT); BEC of lithium (ENS)

- Vortices
- Solitons
- Atom laser
- Atom wave guides
- Nonlinear atom optics
- Collective oscillations
- Josephson oscillations
- Mott-Insulator

J.R. Abo-Shaeer, MIT (2001)

Interest in Ultracold Fermi Gases

- Strongly interacting fermions:
 - high-T_c superconductors
 - neutron stars
 - quark-gluon plasma
- Connections to condensed matter
 - Hubbard model of high-T_c
 - Pseudo-gap physics
 - Strong correlations in low dimensions:

Luttinger liquid, spin-charge separation, ...

Optical lattice configurations

BEC-BCS Crossover

BCS pairing crosses over to Bose-Einstein condensation of molecules with increasing U_{o} :

BEC/BCS Crossover Models

One channel model - original crossover theory (Eagles, Leggett, ...):

 physics is universal (length scale ~ $n^{-\frac{1}{3}}$) widely applicable

e's, nucleons, quarks

BCS – weakly attractive

BEC

Two channel model - Feshbach resonance (Tiesenga, Stoof, Verhaar, 1993):

Feshbach Resonance in ⁶Li

Feshbach Resonances in ⁶Li

Houbiers, Stoof, McAlexander, Hulet, PRA **57**, R1497 (1998) O'Hara *et al.*, PRA **66** 041401 (2002)

Molecular BEC

Molecular BECs: JILA, Innsbruck, MIT, ENS, Duke

BEC-BCS Crossover

- Many experiments over the past 3 years:
 - Collective mode frequencies and damping (Duke, Innsbruck)
 - Spectroscopy of gap (Innsbruck, JILA)
 - Universal thermodynamics (Duke, ENS, Innsbruck, JILA, Rice)
 - Vortices (MIT)
 - Pair correlation measurement (Rice)
 - Pairing with unequal spin populations (MIT, Rice)

Molecular Probe of BEC/BCS Crossover

Two channel description: Romans and Stoof, PRL 95, 260407 (2005)

$$|\psi_{pairs}\rangle = (Z^{1/2} |\psi_{v} (S=0)\rangle + (1-Z)^{1/2} |\phi_{aa} (S=1)\rangle$$

~closed-channel ~open channel
molecules atoms

Use molecular spectroscopy to project out closed-channel molecules:

Excitation rate depends on singlet (closed) channel fraction *Z*:

 $\Gamma \propto Z$

Excitation results in a detectable loss of atoms:

Pulse molecular probe on for time τ , then measure remaining number

Closed Channel Fraction - Z

$Z \propto \Gamma$

- Z continuous across resonance
 ⇒ many-body effect
 Varies by 5 decades
- Z ≈ 10⁻⁵ on resonance
 <1 closed channel molecule!

PRL 95, 020404 (2005)

Reasonably good agreement with theory from: Stoof *et al.*; Javanainen *et al.*; Levin *et al.*

Pair Correlations

Universal Interaction Energy at Unitarity

Size of real space distribution reveals interaction and pairing energies

At unitarity, the chemical potential is reduced by pairing: $\mu = E_F (1 + \beta)^{1/2}$ where β is a *universal* many-body parameter

 $n(z) = A(1 - \frac{z^2}{R^2})^{5/2}$

Fit to non-interacting Fermi distribution:

Compare fitted *R* with the "Thomas-Fermi" radius of a *non-interacting* Fermi gas:

$$R_{TF} = \left(\frac{2E_F}{m\omega_z^2}\right)^{1/2}$$

Axial density is radially integrated column density

Partridge et al., Science 311, 503 (2006)

Universal Interaction Energy at Unitarity

At unitarity, real-space distributions shrink due to pairing energy:

$$\mu = E_F \left(1 + \beta\right)^{1/2}$$

where β is a *universal* many-body parameter

$$\beta = (\frac{R}{R_{TF}})^4 - 1$$

Measurements give:

$$\frac{R}{R_{TF}} = 0.82 \pm 0.02 \qquad \Rightarrow \quad \beta = -0.54 \pm 0.08$$

Agrees with:

- Recent Monte Carlo calculations: $\beta = -0.58 \pm 0.01$ (Carlson *et al.*, Astrakharchik *et al.*)
- Theory: $\beta = -0.545$ (A. Perali *et al.*, PRL, 2004) and $\beta = -0.599$ (H. Hu *et al.*, EPL, 2006)
- Experiments at ENS, Innsbruck, Duke, and JILA

- BEC-BCS crossover
 - cold fermions + Feshbach resonance can be used to realize the crossover
- Universality
 - universal behavior of order parameter
 - universal energy of interaction at unitarity