

1859-27

Summer School on Novel Quantum Phases and Non-Equilibrium Phenomena in Cold Atomic Gases

27 August - 7 September, 2007

Experiments with Fermi gases in the BEC/BCS crossover - Part II

Randy Hulet Rice University, Houston

Fermion Pairing with Unequal Spin Populations

Guthrie Partridge Yean-an Liao Wenhui Li Ramsey Kamar

Special thanks to Henk Stoof

What Happens when the Fermi Energies are Mismatched?

In BCS, the Fermi energies of the two spins are equal:

Mismatch may be created in:

- magnetized superconductors
- pairing of quarks in neutron stars
- cold atoms with unequal spin populations

Unequal Spin Populations with Atoms

Fundamental incompatibility between magnetism and superconductivity
straightforward to make a polarized atomic gas

Use RF sweeps to transfer population between hf levels of ⁶Li

Define polarization $P = (N_1 - N_2) / (N_1 + N_2)$

P controlled to be in the range 0 < P < 1

Measure *P* by independent probes of $|1\rangle$ and $|2\rangle$

Experiments with ⁶Li at MIT and Rice (Science, 2006)

Earliest cold atom theory papers: Combescot; Bedaque, Caldas, Rupak; Liu & Wilczek; Machida; Carlson; Sheehy & Radzihovsky; Sedrakian; K. Yang; Pieri & Strinati; Pao, Wu, Yip; Son; Cohen; Recati; Lobo; Chevy; Mueller; Stoof; Parish, Simons; Ho & Zhai; Hu & Liu; Torma; Chien & Levin; Bulgac; Duan; He

Making Polarized Mixtures

Define polarization $P = (N_1 - N_2) / (N_1 + N_2)$

Initially, $N_2 = 0 \Rightarrow P = 1$ Finally, $0 < N_2 < N_1 \Rightarrow 0 < P < 1$ determined by RF power

 $E_{\rm F} \propto N^{1/3} \Rightarrow E_{\rm F}(1) / E_{\rm F}(2) = [(1-P) / (1+P)]^{1/3}$

Measure *P* by independent probes of $|1\rangle$ and $|2\rangle$

Partridge et al., PRL 97, 190407 (2006)

Deformation of Superfluid Core

The core is compressed axially with increasing *P*

Deformation produces a characteristic dip in the axial difference distribution

Deformation Produced by Surface Tension

Theory without surface tension

T.N. de Silva and E.J. Mueller, PRL 97, 070402 (2006)

Calculation by M. Haque and H.T.C.Stoof cond-mat/0701464

Axial Position (µm)

500

0

 $E_{\rm s} = \eta E_{\rm F}/(area)^2$

Deformation is produced by surface tension at the superfluid/normal phase boundary

phase separation always results in surface tension

Column Density (10⁸/cm²)

10

-500

-500

500

0

3D Density Reconstruction - Atom Tomography

Column densities (cut through image)

Phase boundary is very steep

Reconstructed real-space densities using Abel transform (thanks to E. Mueller for code)

Central core is evenly paired

Temperature Dependence- 2 Paired Regimes

Low temperature: $T < 0.05 T_{F}$

- distortion
- sharp phase boundary
- paired core for all P

"High" temperature: $T \approx 0.2 T_{F}$

- no distortion
- partially polarized shell
- *paired center* up to finite *P*

$T \approx 0.2 T_{\rm F}$: No Distortion

High T Phase also has Paired Center

Evenly paired for nearly all P

No Clogston limit

Theory by C-C Chien, Q Chen, Y He, and K Levin, cond-mat/0612103:

Center also paired for low P, but becomes unpaired for P > 70-80%

Clogston limit

Proposed Phase Diagrams at Unitarity

- distortions from surf. tension at protections from surf.
- paired core for all P

 $(N_1 - N_2)/(N_1 + N_2)$

Intermediate T-Phase Separation for $P > P_c$

 $T \approx 0.1 T_{\rm F}$

Partridge et al., Science 311, 503 (2006)

Phase separation Yes

Maybe Polarized BCS superfluid

No **FFLO**

No DFS

No Clogston limit **Clogston limit**

Surface tension between fully paired and normal phases \rightarrow Indicator of phase separation

M. Parish et al.

- Is surface tension a finite size effect? ($N = 3 \times 10^5$) \bullet
 - YES: depends on surface area/vol ($N^{1/3}$ scaling)
 - NO: *E*_F / ω_r ~ 10
- Clogston limit? H. Zhai cond-mat/0709.0388;
 - **Gubbels and Stoof**

- Future \bullet
 - reduce aspect ratio
 - map phase diagram vs. T, P, $k_{\rm F}a$
 - search for FFLO phase in 1D (Hu, Liu, Drummond; Orso)

Postdoctoral Positions Available

New Multi-University Program on Optical Lattice Simulations of Correlated Fermions

Experimental Program at Rice University

email: randy@rice.edu http://atomcool.rice.edu

