

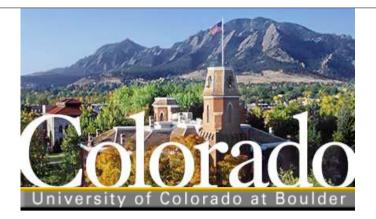
1859-29

Summer School on Novel Quantum Phases and Non-Equilibrium Phenomena in Cold Atomic Gases

27 August - 7 September, 2007

Theory of BEC/BCS crossover with p-wave Feshbach resonances

Victor Gurarie University of Colorado at Boulder

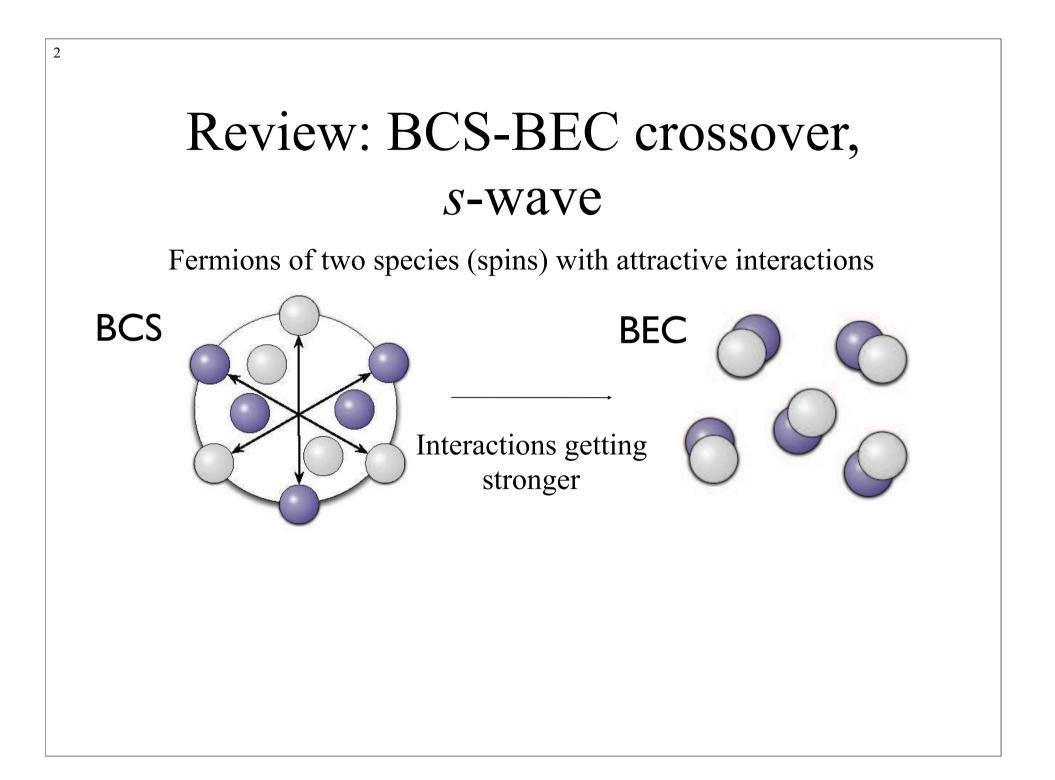


p-wave BCS-BEC condensates

Victor Gurarie

Thanks to:

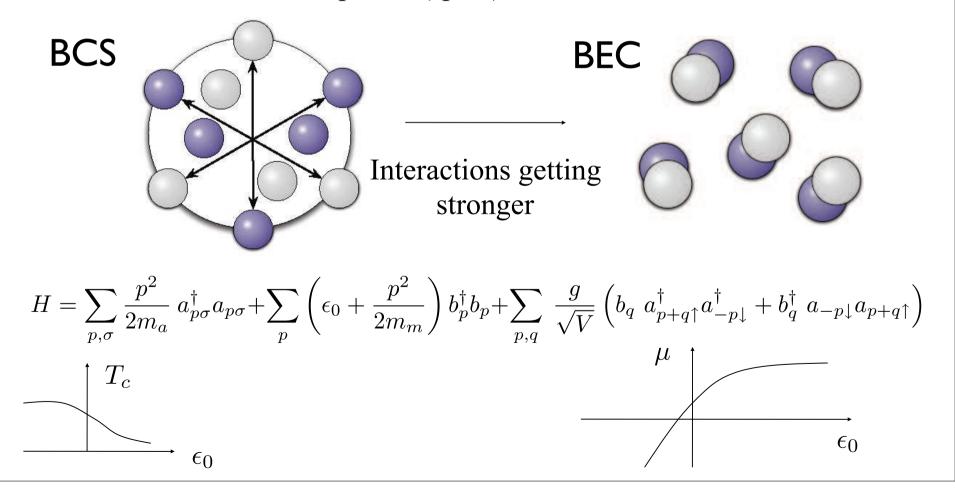
- •L. Radzihovsky (Boulder)
- •A. Andreev (UWa, Seattle)
- •J. Levinsen (Boulder)
- •N. Cooper (Cambridge, UK)



Review: BCS-BEC crossover, *s*-wave

2

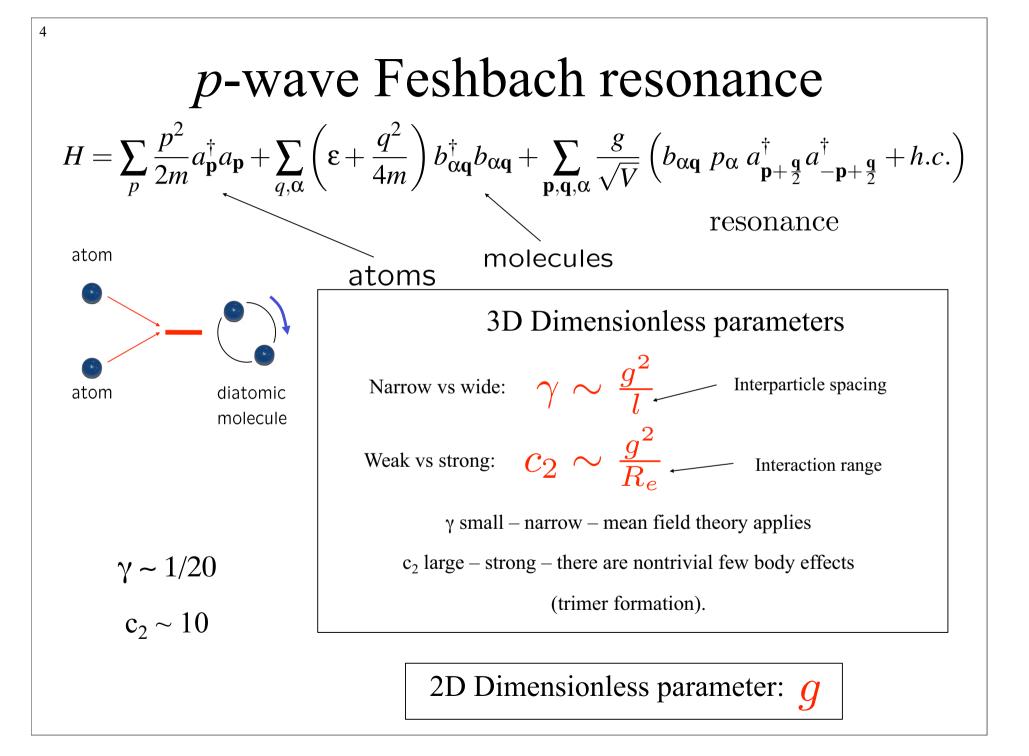
Fermions of two species (spins) with attractive interactions



p-wave BCS-BEC condensates:

• Using identical fermionic atoms suppresses *s*-wave, leads to *p*-wave.

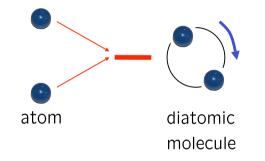
- Could be in one of two possible regimes: $p_x + ip_y$ (axial) or p_x (polar).
- Identical atoms with *p*-wave resonances prefer to be in the $p_x + ip_y$ regime.
- BCS to BEC is a phase transition. For $p_x + ip_y$ it is a topological phase transition.
- BCS $p_x + ip_y$ phase in 2D is a <u>topological phase</u> which supports <u>non-Abelian</u> excitations and could be used for decoherence-free quantum computing and quantum information storage.
- Not yet clear if the *p*-wave superfluids can be made stable.



The physics of the resonance

$$H = \sum_{p} \frac{p^{2}}{2m} a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}} + \sum_{q,\alpha} \left(\varepsilon + \frac{q^{2}}{4m} \right) b_{\alpha \mathbf{q}}^{\dagger} b_{\alpha \mathbf{q}} + \sum_{\mathbf{p},\mathbf{q},\alpha} \frac{g}{\sqrt{V}} \left(b_{\alpha \mathbf{q}} \ p_{\alpha} \ a_{\mathbf{p}+\frac{\mathbf{q}}{2}}^{\dagger} a_{-\mathbf{p}+\frac{\mathbf{q}}{2}}^{\dagger} + h.c. \right)$$

atom

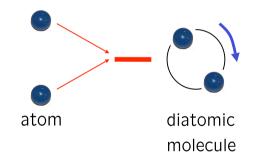


The physics of the resonance

$$H = \sum_{p} \frac{p^{2}}{2m} a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}} + \sum_{q,\alpha} \left(\varepsilon + \frac{q^{2}}{4m} \right) b_{\alpha \mathbf{q}}^{\dagger} b_{\alpha \mathbf{q}} + \sum_{\mathbf{p},\mathbf{q},\alpha} \frac{g}{\sqrt{V}} \left(b_{\alpha \mathbf{q}} \ p_{\alpha} \ a_{\mathbf{p}+\frac{\mathbf{q}}{2}}^{\dagger} a_{-\mathbf{p}+\frac{\mathbf{q}}{2}}^{\dagger} + h.c. \right)$$

atom

5



Scattering amplitude

$$f(p) = \frac{p^2}{-\frac{1}{\nu} + \frac{1}{2}k_0p^2 - ip^3}$$

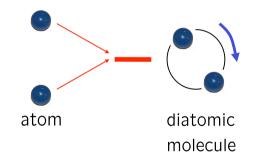
Landau & Lifshitz, vol 3

The physics of the resonance

$$H = \sum_{p} \frac{p^{2}}{2m} a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}} + \sum_{q,\alpha} \left(\varepsilon + \frac{q^{2}}{4m} \right) b_{\alpha \mathbf{q}}^{\dagger} b_{\alpha \mathbf{q}} + \sum_{\mathbf{p},\mathbf{q},\alpha} \frac{g}{\sqrt{V}} \left(b_{\alpha \mathbf{q}} \ p_{\alpha} \ a_{\mathbf{p}+\frac{\mathbf{q}}{2}}^{\dagger} a_{-\mathbf{p}+\frac{\mathbf{q}}{2}}^{\dagger} + h.c. \right)$$

atom

5



Scattering amplitude

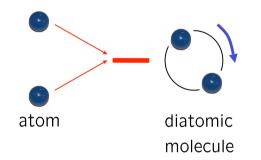
$$f(p) = \frac{p^2}{-\frac{1}{\nu} + \frac{1}{2}k_0p^2 - ip^3}$$

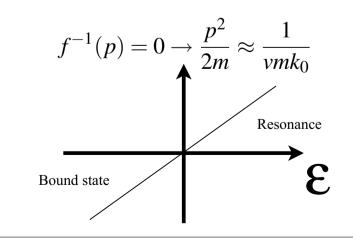
Landau & Lifshitz, vol 3

$$\frac{1}{v} = -\frac{6\pi}{mg^2} \left(\varepsilon - \frac{mg^2}{9\pi^2} \Lambda^3 \right)$$
$$k_0 = -\frac{12\pi}{m^2 g^2} \left(1 + \frac{m^2}{3\pi^2} g^2 \Lambda \right)$$

The physics of the resonance $H = \sum_{p} \frac{p^{2}}{2m} a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}} + \sum_{q,\alpha} \left(\varepsilon + \frac{q^{2}}{4m} \right) b_{\alpha \mathbf{q}}^{\dagger} b_{\alpha \mathbf{q}} + \sum_{\mathbf{p},\mathbf{q},\alpha} \frac{g}{\sqrt{V}} \left(b_{\alpha \mathbf{q}} \ p_{\alpha} \ a_{\mathbf{p}+\frac{\mathbf{q}}{2}}^{\dagger} a_{-\mathbf{p}+\frac{\mathbf{q}}{2}}^{\dagger} + h.c. \right)$

atom





Scattering amplitude

$$f(p) = \frac{p^2}{-\frac{1}{\nu} + \frac{1}{2}k_0p^2 - ip^3}$$

Landau & Lifshitz, vol 3

$$\frac{1}{v} = -\frac{6\pi}{mg^2} \left(\varepsilon - \frac{mg^2}{9\pi^2} \Lambda^3 \right)$$
$$k_0 = -\frac{12\pi}{m^2 g^2} \left(1 + \frac{m^2}{3\pi^2} g^2 \Lambda \right)$$

$$H = \sum_{p} \frac{p^2}{2m} a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}} + \sum_{q,\alpha} \left(\varepsilon + \frac{q^2}{4m} \right) b_{\alpha \mathbf{q}}^{\dagger} b_{\alpha \mathbf{q}} + \sum_{\mathbf{p},\mathbf{q},\alpha} \frac{g}{\sqrt{V}} \left(b_{\alpha \mathbf{q}} \ p_{\alpha} \ a_{\mathbf{p}+\frac{\mathbf{q}}{2}}^{\dagger} a_{-\mathbf{p}+\frac{\mathbf{q}}{2}}^{\dagger} + h.c. \right)$$

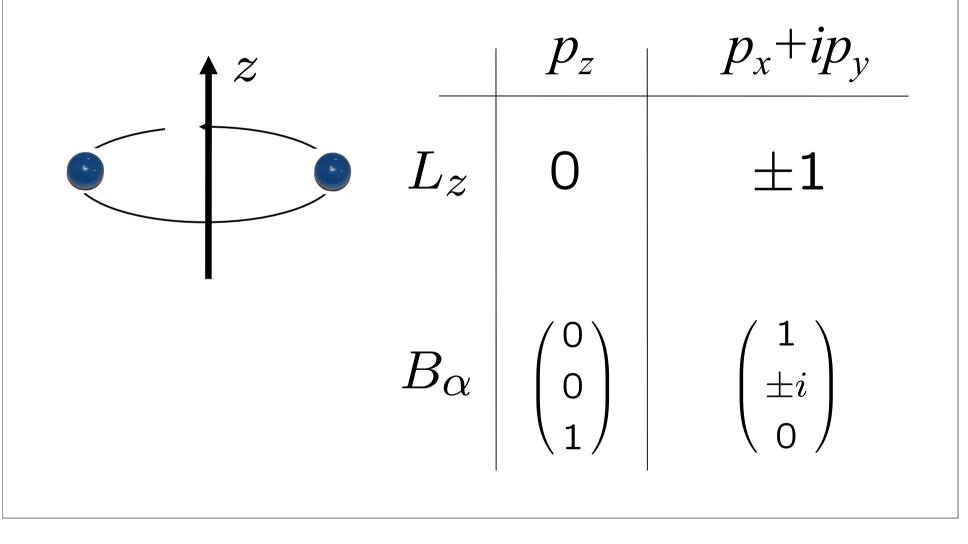
Substitute:
$$\langle b_{\alpha \mathbf{p}} \rangle \to \delta_{\mathbf{p},0} B_{\alpha}$$

 $B_{\alpha} = u_{\alpha} + i v_{\alpha}$
 $u_{\alpha} v_{\alpha} = 0$

 $\left< b_{0,\alpha} \right> = B_{\alpha}$ is a molecular condensate, which could be

$$B_{\alpha} = B \begin{pmatrix} 1 \\ i \\ 0 \end{pmatrix}, \ p_{x} + ip_{y} \text{ phase} \qquad B_{\alpha} = B \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \ p_{z} \text{ phase}$$
$$u = v \qquad v = 0$$

Two phases of a *p*-wave spinless superfluid



Mean field: $b_{\alpha \mathbf{q}} = B_{\alpha} \delta_{\mathbf{q},\mathbf{0}}$ $B_{\alpha} = u_{\alpha} + i v_{\alpha}$ $u_{\alpha} v_{\alpha} = 0$

8

$$\frac{\delta F[B]}{\delta B_{\alpha}} = (\epsilon - 2\mu) B_{\alpha} - g^2 \int \frac{d^d p}{(2\pi)^d} \frac{p_{\alpha} p_{\beta} B_{\beta}}{\sqrt{\left(\frac{p^2}{2m} - \mu\right)^2 + 4g^2 B_{\gamma} B_{\delta}^* p_{\gamma} p_{\delta}}} = 0.$$

V. Gurarie, L. Radzihovsky, A. Andreev (2005)

Mean field: $b_{\alpha \mathbf{q}} = B_{\alpha} \delta_{\mathbf{q},\mathbf{0}}$ $B_{\alpha} = u_{\alpha} + iv_{\alpha}$ $u_{\alpha} v_{\alpha} = 0$

8

$$\frac{\delta F[B]}{\delta B_{\alpha}} = (\epsilon - 2\mu) B_{\alpha} - g^2 \int \frac{d^d p}{(2\pi)^d} \frac{p_{\alpha} p_{\beta} B_{\beta}}{\sqrt{\left(\frac{p^2}{2m} - \mu\right)^2 + 4g^2 B_{\gamma} B_{\delta}^* p_{\gamma} p_{\delta}}} = 0.$$

$$F[B_{\alpha}] = (\epsilon - 2\mu) (u^{2} + v^{2}) + \nu(\mu) \left[(u^{2} + v^{2}) \log (u + v) + \frac{u^{3} + v^{3}}{u + v} \right] + \frac{4\pi a}{m} \left[(u^{2} + v^{2})^{2} + \frac{1}{2} (u^{2} - v^{2})^{2} \right]$$

V. Gurarie, L. Radzihovsky, A. Andreev (2005)

Mean field: $b_{\alpha \mathbf{q}} = B_{\alpha} \delta_{\mathbf{q},\mathbf{0}}$ $u_{\alpha} v_{\alpha} = 0$ $B_{\alpha} = u_{\alpha} + i v_{\alpha}$

8

$$\frac{\delta F[B]}{\delta B_{\alpha}} = (\epsilon - 2\mu) B_{\alpha} - g^2 \int \frac{d^d p}{(2\pi)^d} \frac{p_{\alpha} p_{\beta} B_{\beta}}{\sqrt{\left(\frac{p^2}{2m} - \mu\right)^2 + 4g^2 B_{\gamma} B_{\delta}^* p_{\gamma} p_{\delta}}} = 0.$$

Free term

$$F[B_{\alpha}] = (\epsilon - 2\mu) (u^{2} + v^{2}) + \nu(\mu) \left[(u^{2} + v^{2}) \log (u + v) + \frac{u^{3} + v^{3}}{u + v} \right] + \frac{4\pi a}{m} \left[(u^{2} + v^{2})^{2} + \frac{1}{2} (u^{2} - v^{2})^{2} \right]$$

V. Gurarie, L. Radzihovsky, A. Andreev (2005)

Mean field: $b_{\alpha \mathbf{q}} = B_{\alpha} \delta_{\mathbf{q},\mathbf{0}}$ $u_{\alpha} v_{\alpha} = 0$ $B_{\alpha} = u_{\alpha} + i v_{\alpha}$

$$\frac{\delta F[B]}{\delta B_{\alpha}} = (\epsilon - 2\mu) B_{\alpha} - g^2 \int \frac{d^d p}{(2\pi)^d} \frac{p_{\alpha} p_{\beta} B_{\beta}}{\sqrt{\left(\frac{p^2}{2m} - \mu\right)^2 + 4g^2 B_{\gamma} B_{\delta}^* p_{\gamma} p_{\delta}}} = 0.$$

Free term BCS term

$$F[B_{\alpha}] = (\epsilon - 2\mu) (u^{2} + v^{2}) + \nu(\mu) \left[(u^{2} + v^{2}) \log (u + v) + \frac{u^{3} + v^{3}}{u + v} \right] + \frac{4\pi a}{m} \left[(u^{2} + v^{2})^{2} + \frac{1}{2} (u^{2} - v^{2})^{2} \right]$$
V. Gurarie, L. Radzihovsky, A. Andreev (2005)

Mean field: $b_{\alpha \mathbf{q}} = B_{\alpha} \delta_{\mathbf{q},\mathbf{0}}$ $B_{\alpha} = u_{\alpha} + iv_{\alpha}$ $u_{\alpha} v_{\alpha} = 0$

$$\frac{\delta F[B]}{\delta B_{\alpha}} = (\epsilon - 2\mu) B_{\alpha} - g^2 \int \frac{d^d p}{(2\pi)^d} \frac{p_{\alpha} p_{\beta} B_{\beta}}{\sqrt{\left(\frac{p^2}{2m} - \mu\right)^2 + 4g^2 B_{\gamma} B_{\delta}^* p_{\gamma} p_{\delta}}} = 0.$$

Free term BCS term

$$F[B_{\alpha}] = (\epsilon - 2\mu) (u^{2} + v^{2}) + \nu(\mu) \left[(u^{2} + v^{2}) \log (u + v) + \frac{u^{3} + v^{3}}{u + v} \right] + \frac{4\pi a}{m} \left[(u^{2} + v^{2})^{2} + \frac{1}{2} (u^{2} - v^{2})^{2} \right] \\ (B_{\alpha}^{*} B_{\alpha})^{2} \qquad B^{2} B^{*2}$$
BEC term V. Gurarie, L. Radzihovsky, A. Andreev (2005)

Mean field: $b_{\alpha \mathbf{q}} = B_{\alpha} \delta_{\mathbf{q},\mathbf{0}}$ $B_{\alpha} = u_{\alpha} + iv_{\alpha}$ $u_{\alpha} v_{\alpha} = 0$

$$\frac{\delta F[B]}{\delta B_{\alpha}} = (\epsilon - 2\mu) B_{\alpha} - g^2 \int \frac{d^d p}{(2\pi)^d} \frac{p_{\alpha} p_{\beta} B_{\beta}}{\sqrt{\left(\frac{p^2}{2m} - \mu\right)^2 + 4g^2 B_{\gamma} B_{\delta}^* p_{\gamma} p_{\delta}}} = 0.$$

Free term BCS term

$$F[B_{\alpha}] = (\epsilon - 2\mu) (u^{2} + v^{2}) + \nu(\mu) \left[(u^{2} + v^{2}) \log (u + v) + \frac{u^{3} + v^{3}}{u + v} \right] + \frac{4\pi a}{m} \left[(u^{2} + v^{2})^{2} + \frac{1}{2} (u^{2} - v^{2})^{2} \right]$$

$$H = \frac{4\pi a}{m} \left[(u^{2} + v^{2})^{2} + \frac{1}{2} (u^{2} - v^{2})^{2} \right]$$

$$H = \frac{4\pi a}{m} \left[(u^{2} + v^{2})^{2} + \frac{1}{2} (u^{2} - v^{2})^{2} \right]$$

$$H = \frac{4\pi a}{m} \left[(u^{2} + v^{2})^{2} + \frac{1}{2} (u^{2} - v^{2})^{2} \right]$$

$$H = \frac{4\pi a}{m} \left[(u^{2} + v^{2})^{2} + \frac{1}{2} (u^{2} - v^{2})^{2} \right]$$

$$H = \frac{4\pi a}{m} \left[(u^{2} + v^{2})^{2} + \frac{1}{2} (u^{2} - v^{2})^{2} \right]$$

$$H = \frac{4\pi a}{m} \left[(u^{2} + v^{2})^{2} + \frac{1}{2} (u^{2} - v^{2})^{2} \right]$$

$$H = \frac{4\pi a}{m} \left[(u^{2} + v^{2})^{2} + \frac{1}{2} (u^{2} - v^{2})^{2} \right]$$

$$H = \frac{4\pi a}{m} \left[(u^{2} + v^{2})^{2} + \frac{1}{2} (u^{2} - v^{2})^{2} \right]$$

$$H = \frac{4\pi a}{m} \left[(u^{2} + v^{2})^{2} + \frac{1}{2} (u^{2} - v^{2})^{2} \right]$$

$$H = \frac{4\pi a}{m} \left[(u^{2} + v^{2})^{2} + \frac{1}{2} (u^{2} - v^{2})^{2} \right]$$

$$H = \frac{4\pi a}{m} \left[(u^{2} + v^{2})^{2} + \frac{1}{2} (u^{2} - v^{2})^{2} \right]$$

$$H = \frac{4\pi a}{m} \left[(u^{2} + v^{2})^{2} + \frac{1}{2} (u^{2} - v^{2})^{2} \right]$$

$$H = \frac{4\pi a}{m} \left[(u^{2} + v^{2})^{2} + \frac{1}{2} (u^{2} - v^{2})^{2} \right]$$

$$H = \frac{4\pi a}{m} \left[(u^{2} + v^{2})^{2} + \frac{1}{2} (u^{2} - v^{2})^{2} \right]$$

$$H = \frac{4\pi a}{m} \left[(u^{2} + v^{2})^{2} + \frac{1}{2} (u^{2} - v^{2})^{2} \right]$$

$$H = \frac{4\pi a}{m} \left[(u^{2} + v^{2})^{2} + \frac{1}{2} (u^{2} - v^{2})^{2} \right]$$

$$H = \frac{4\pi a}{m} \left[(u^{2} + v^{2})^{2} + \frac{1}{2} (u^{2} - v^{2})^{2} \right]$$

$$H = \frac{4\pi a}{m} \left[(u^{2} + v^{2})^{2} + \frac{1}{2} (u^{2} - v^{2})^{2} \right]$$

$$H = \frac{4\pi a}{m} \left[(u^{2} + v^{2})^{2} + \frac{1}{2} (u^{2} - v^{2})^{2} \right]$$

$$H = \frac{4\pi a}{m} \left[(u^{2} + v^{2})^{2} + \frac{1}{2} (u^{2} - v^{2})^{2} \right]$$

$$H = \frac{4\pi a}{m} \left[(u^{2} + v^{2})^{2} + \frac{1}{2} (u^{2} - v^{2})^{2} \right]$$

$$H = \frac{4\pi a}{m} \left[(u^{2} + v^{2})^{2} + \frac{1}{2} (u^{2} - v^{2})^{2} \right]$$

$$H = \frac{4\pi a}{m} \left[(u^{2} + v^{2})^{2} + \frac{1}{2} (u^{2} - v^{2})^{2} \right]$$

$$H = \frac{4\pi a}{m} \left[(u^{2} + v^{2})^{2} + \frac{1}{2} (u^{2} - v^{2})^{2} \right]$$

$$H = \frac{4\pi a}{m} \left[(u^{2} + v^{2})^{2} + \frac{1}{2} (u^{2} - v^{2})^{2} \right]$$

$$H = \frac{4\pi a}{m} \left[(u^{2} +$$

$\mu = 0$ phase transitions

9

Phase	Bogoliubov spectrum	Gapless point $\mu > 0$	$\mu < 0$
p_x	$E_p = \sqrt{\left(\frac{p^2}{2m} - \mu\right)^2 + 4B^2 p_x^2}$	$p_x = 0, \ \frac{p^2}{2m} = \mu$	Gapped
$p_x + i p_y$	$E_{p} = \sqrt{\left(\frac{p^{2}}{2m} - \mu\right)^{2} + 4B^{2}\left(p_{x}^{2} + p_{y}^{2}\right)}$	$p_x = 0, \ p_y = 0, \ \frac{p^2}{2m} = \mu$	Gapped

Thus μ=0 represents a quantum phase (BCS to BEC) transition G. Volovik, (1993). L. Borkowski, C. Sá de Melo, (1999).

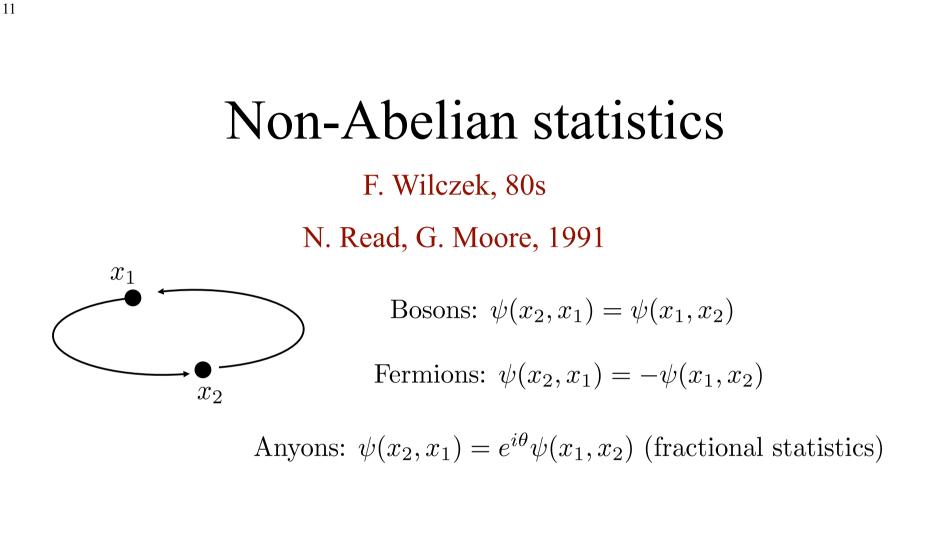
In case of $p_x + ip_y$ the transition is topological (G. Volovik, Universe in a Helium Droplet))

p-wave condensates confined to 2D

10

 $p_x + ip_y$ condensates, when confined to 2D, in the **BCS** (but <u>not</u> BEC) regime, realize particles with non-Abelian statistics.

N. Read and D. Green, PRB 2000



"non-Abelians": $\psi_i(x_2, x_1) = \sum_j U_{ij} \psi_j(x_1, x_2)$ (non-Abelian statistics)

Conditions for the non-Abelian statistics: <u>2D, gap, fractionalization</u>

Footnote: proposals to realize quantum computing with non-Abelian particles. A. Kitaev (2001)

BdG Equations in a Superconductor

$$\hat{H} = \sum_{ij} \begin{pmatrix} \hat{a}_i^{\dagger} h_{ij} \hat{a}_j - \hat{a}_j h_{ij} \hat{a}_i^{\dagger} + \hat{a}_i \Delta_{ij} \hat{a}_j + \hat{a}_j^{\dagger} \Delta_{ij}^* \hat{a}_i^{\dagger} \end{pmatrix}$$

i, *j* stand for position, spin, etc.
$$\hat{h}_{\Delta}^{\dagger} = h$$

$$\Delta^T = -\Delta$$

BdG Equations in a Superconductor

$$\hat{H} = \sum_{ij} \begin{pmatrix} \hat{a}_i^{\dagger} h_{ij} \hat{a}_j - \hat{a}_j h_{ij} \hat{a}_i^{\dagger} + \hat{a}_i \Delta_{ij} \hat{a}_j + \hat{a}_j^{\dagger} \Delta_{ij}^* \hat{a}_i^{\dagger} \end{pmatrix}$$

i, *j* stand for position, spin, etc.

$$\hat{h}^{\dagger} = h$$

$$\Delta^T = -\Delta$$

 $\mathcal{H} = \begin{pmatrix} h & \Delta \\ \Delta^{\dagger} & -h^T \end{pmatrix} \qquad \qquad \text{BdG Equations: } \mathcal{H}\psi_n = E_n\psi_n$

BdG Equations in a Superconductor

$$\hat{H} = \sum_{ij} \begin{pmatrix} \hat{a}_i^{\dagger} h_{ij} \hat{a}_j - \hat{a}_j h_{ij} \hat{a}_i^{\dagger} + \hat{a}_i \Delta_{ij} \hat{a}_j + \hat{a}_j^{\dagger} \Delta_{ij}^* \hat{a}_i^{\dagger} \end{pmatrix}$$

 $i, j \text{ stand for position, spin, etc.}$
 $\lambda^T = -\Delta$
 $\mathcal{H} = \begin{pmatrix} h & \Delta\\ \Delta^{\dagger} & -h^T \end{pmatrix}$
BdG Equations: $\mathcal{H}\psi_n = E_n\psi_n$

Important symmetry:

 $\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}. \quad \mathcal{H}^* = -\sigma_1 \mathcal{H} \sigma_1, \qquad \qquad \mathcal{H} \sigma_1 \psi_n^* = -\sigma_1 \mathcal{H}^* \psi_n^* = -E_n \sigma_1 \psi_n^*.$

Eingevalues come in pairs: $\psi_n, E_n; \ \sigma_1\psi_n^*, -E_n$

M. Zirnbauer, 1996: Class D Hamiltonian

Zero modes in a superconductor

$$\mathcal{H}\psi = 0 \rightarrow \mathcal{H}\sigma_1\psi^* = 0.$$

$$\psi_0 = \psi + \sigma_1 \psi^* \qquad \psi_0 = i \left(\psi - \sigma_1 \psi^* \right) \quad \longrightarrow \quad \sigma_1 \psi_0 = \psi_0^*$$

$$= \begin{pmatrix} u \\ u^* \end{pmatrix}$$
 Zero mode creation operator
$$\hat{\gamma} = \sum_i u_i^* \hat{a}_i + u_i \hat{a}_i^{\dagger}$$

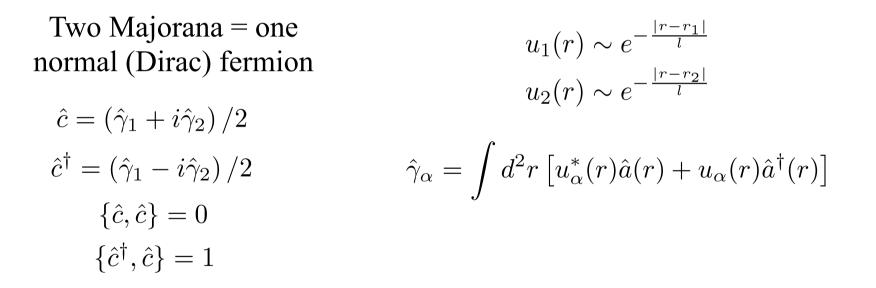
Zero mode is a Majorana fermion

$$\hat{\gamma}^{\dagger} = \hat{\gamma}, \ \hat{\gamma}^2 = 1$$

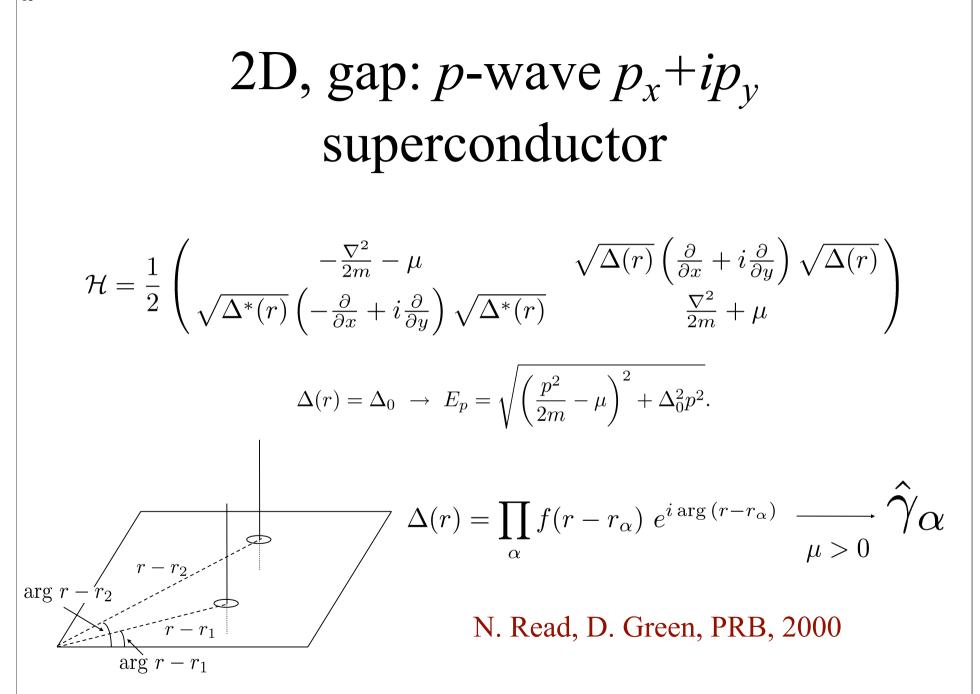
Stability of the zero modes: VG, L. Radzihovsky, PRB, 2007

 ψ_0

Breaking a fermion apart



Thus a superconductor, via its zero modes, breaks the fermions in half: the fractionalization



Relationship to Quantum Hall Effect

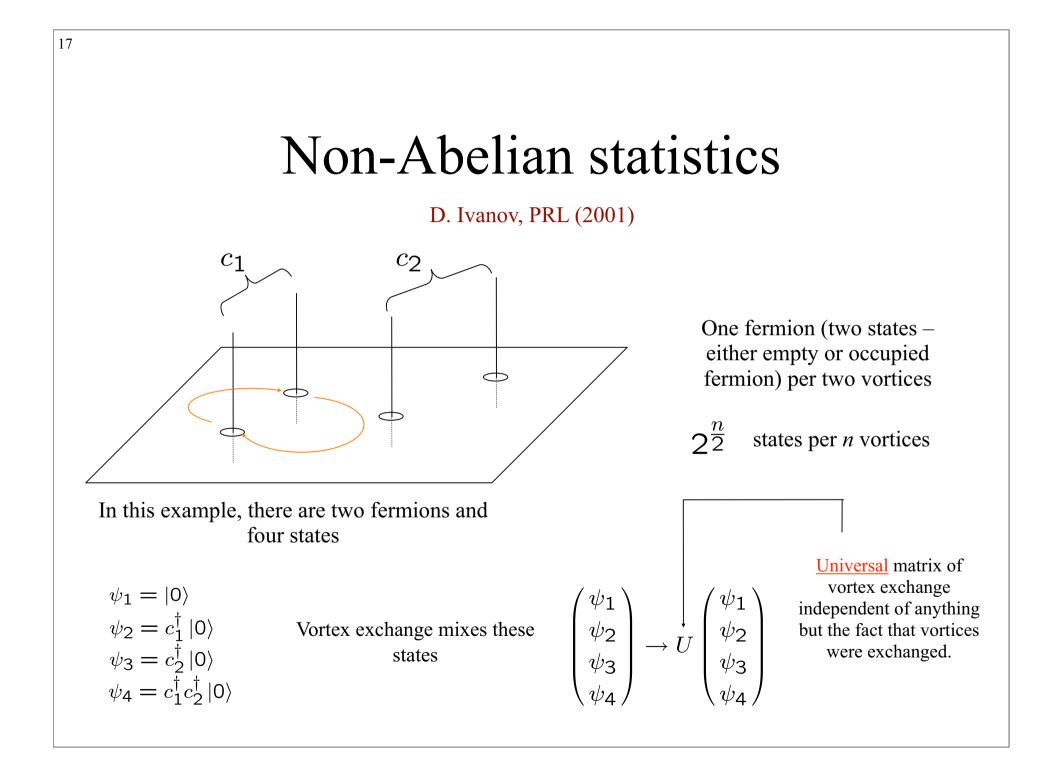
 $|BCS\rangle = \prod_{p} \left(u_p + v_p a_{-p}^{\dagger} a_p^{\dagger} \right) |0\rangle \qquad \psi(r_1, r_2, \ldots) = \langle 0| a(r_1) a(r_2) \ldots |BCS\rangle$

Relationship to Quantum Hall Effect

 $|BCS\rangle = \prod_{p} \left(u_p + v_p a_{-p}^{\dagger} a_p^{\dagger} \right) |0\rangle \qquad \psi(r_1, r_2, \ldots) = \langle 0| a(r_1) a(r_2) \ldots |BCS\rangle$ $\psi(r_1, r_2, \ldots) = \mathcal{A} \left[g(r_1 - r_2) g(r_3 - r_4) \ldots \right] \qquad g(r) = \int \frac{d^d p}{(2\pi)^d} \frac{v_p}{u_p} e^{ipr}$ $\mu > 0, \ 2D, \ p_x + ip_y \ \rightarrow \ g(r) \sim \frac{1}{z}$

Relationship to Quantum Hall Effect

 $|BCS\rangle = \prod \left(u_p + v_p a_{-p}^{\dagger} a_p^{\dagger} \right) |0\rangle \qquad \psi(r_1, r_2, \ldots) = \langle 0| a(r_1) a(r_2) \ldots |BCS\rangle$ $\psi(r_1, r_2, \ldots) = \mathcal{A}\left[g(r_1 - r_2)g(r_3 - r_4)\ldots\right] \qquad g(r) = \int \frac{d^d p}{(2\pi)^d} \frac{v_p}{u_p} e^{ipr}$ $\mu > 0, \ 2D, \ p_x + ip_y \rightarrow g(r) \sim \frac{1}{\tilde{z}}$ $\psi(z_1, z_2, \dots, z_N) = \mathcal{A} \left[\frac{1}{z_1 - z_2} \frac{1}{z_3 - z_4} \dots \frac{1}{z_{N-1} - z_N} \right]$ One recognizes the Pfaffian (Moore-Read) state in the quantum Hall effect. C. Nayak, Thus non-Abelian statistics must follow. F. Wilczek, 1994 N. Read and D. Green, PRB, 2000



Candidates to realize the Pfaffian state

- Quantum Hall Effect. At v=5/2, it is very fragile and experiments are inconclusive.
- Rotating Bosons. Hard to rotate.
- Liquid ³He. Must be in one of the more exotic phases to be p_x+ip_y , it is not clear how to manipulate its zero modes.
- SrRuO₄. Fierce debates whether it is a *p*-wave superconductor at all, to say nothing whether it is $p_x + ip_y$.
- *P*-wave Feshbach resonances. <u>Known</u> to be $p_x + ip_y$. Stability of the *p*-wave molecules?

QH

SC

BCS-BEC phase transition 2D p_x+ip_y condensate

$$E_p = \sqrt{\left(\frac{p^2}{2m_a} - \mu\right)^2 + 4g^2 B^2 \left(p_x^2 + p_y^2\right)}$$

In 2D, the spectrum is gapped at both $\square > 0$ and $\square < 0$, and gapless at $\square = 0$.

 $\square > 0$ to $\square < 0$ is a topological phase transition

N. Read, D. Green, Phys. Rev. B **61**, 10261 (2000)

G. Volovik, "Universe in a Helium Droplet"

BCS-BEC phase transition 2D p_x+ip_y condensate

$$E_{p} = \sqrt{\left(\frac{p^{2}}{2m_{a}} - \mu\right)^{2} + 4g^{2}B^{2}\left(p_{x}^{2} + p_{y}^{2}\right)}$$

In 2D, the spectrum is gapped at both $\square > 0$ and $\square < 0$, and gapless at $\square = 0$.

 $\square > 0$ to $\square < 0$ is a topological phase transition

N. Read, D. Green, Phys. Rev. B **61**, 10261 (2000)

G. Volovik, "Universe in a Helium Droplet"

$$|\Omega\rangle = \prod_{p} \left[u_{p} + v_{p} \ a_{p}^{\dagger} a_{-p}^{\dagger} \right] |0\rangle$$

Anderson's pseudospin

 $\begin{cases} n_x + in_y = 2v^*u\\ n_z = |v|^2 - |u|^2 \end{cases}$

$$\vec{n} = \frac{1}{\sqrt{\left(\frac{p^2}{2m_a} - \mu\right)^2 + 4B^2 \left(p_x^2 + p_y^2\right)}} \begin{pmatrix} 2gBp_x \\ -2gBp_y \\ \frac{p^2}{2m_a} - \mu \end{pmatrix}$$

BCS-BEC phase transition 2D p_x+ip_y condensate

$$E_p = \sqrt{\left(\frac{p^2}{2m_a} - \mu\right)^2 + 4g^2 B^2 \left(p_x^2 + p_y^2\right)}$$

In 2D, the spectrum is gapped at both $\square > 0$ and $\square < 0$, and gapless at $\square = 0$.

 $\square > 0$ to $\square < 0$ is a topological phase transition

N. Read, D. Green, Phys. Rev. B **61**, 10261 (2000)

G. Volovik, "Universe in a Helium Droplet"

Explicit calculations show that

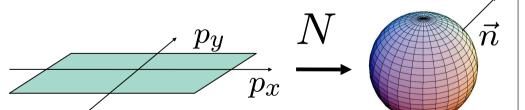
$$N=0$$
 if $\square < 0$
 $N=1$ if $\square > 0$

$$|\Omega\rangle = \prod_{p} \left[u_{p} + v_{p} \ a_{p}^{\dagger} a_{-p}^{\dagger} \right] |0\rangle$$

Anderson's pseudospin

 $\begin{cases} n_x + in_y = 2v^*u\\ n_z = |v|^2 - |u|^2 \end{cases}$

$$\vec{n} = \frac{1}{\sqrt{\left(\frac{p^2}{2m_a} - \mu\right)^2 + 4B^2 \left(p_x^2 + p_y^2\right)}} \begin{pmatrix} 2gBp_x \\ -2gBp_y \\ \frac{p^2}{2m_a} - \mu \end{pmatrix}$$



$$N = \frac{1}{8\pi} \int d^2 p \left[\vec{n} \cdot \partial_{\alpha} \vec{n} \times \partial_{\beta} \vec{n} \ \epsilon_{\alpha\beta} \right]$$
topological invariant

Experiments

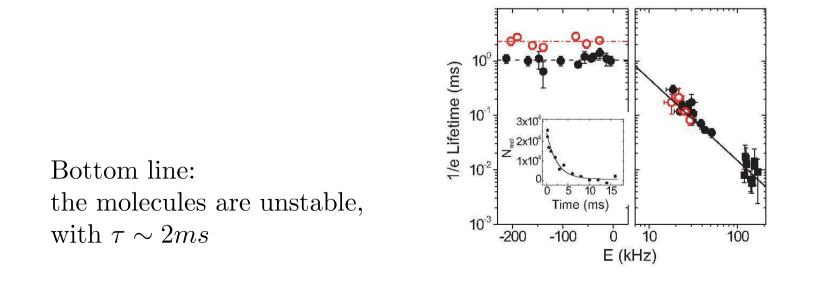
PHYSICAL REVIEW A 70, 030702(R) (2004)

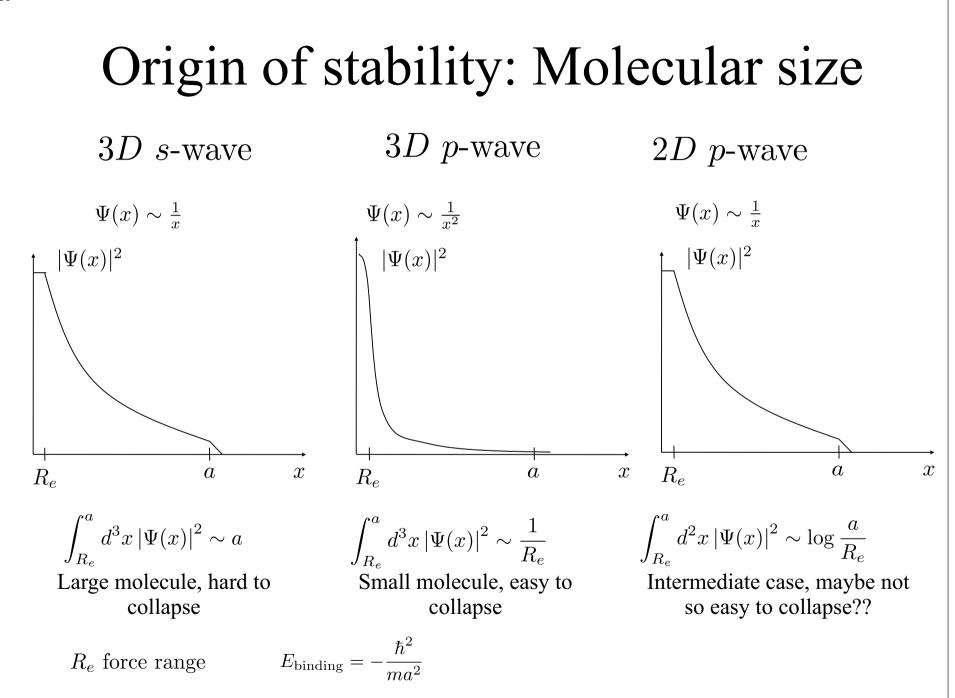
P-wave Feshbach resonances of ultracold ⁶Li

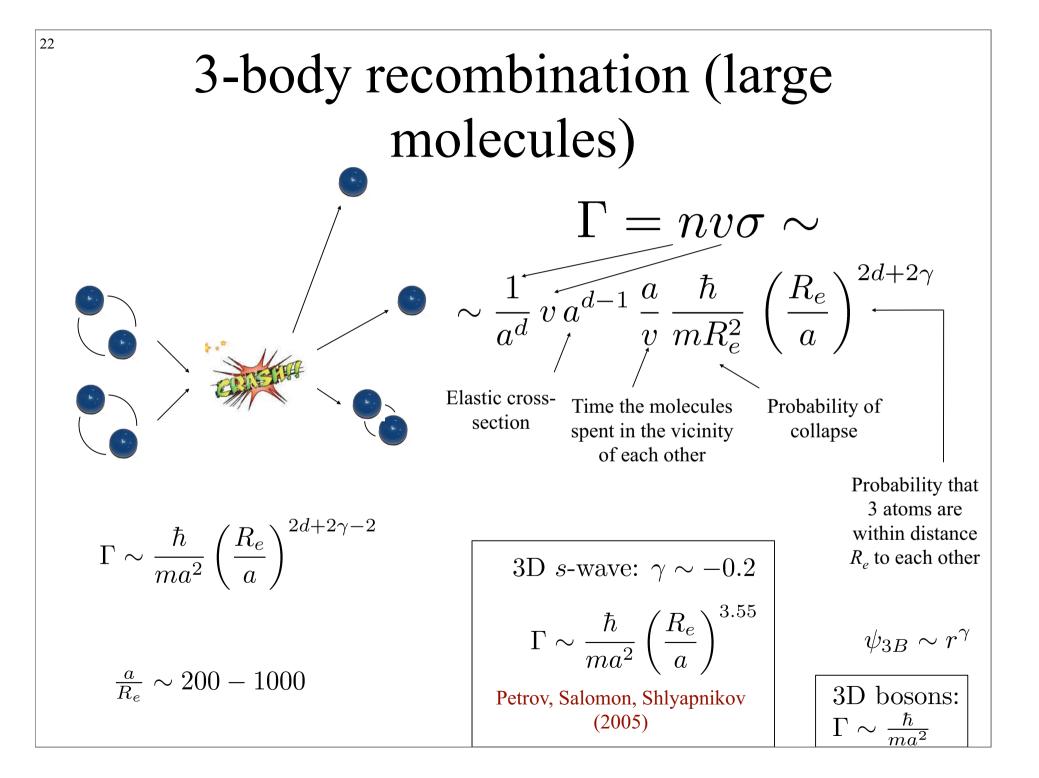
J. Zhang,^{1,2} E. G. M. van Kempen,³ T. Bourdel,¹ L. Khaykovich,^{1,4} J. Cubizolles,¹ F. Chevy,¹ M. Teichmann,¹ L. Tarruell,¹ S. J. J. M. F. Kokkelmans,^{1,3} and C. Salomon¹ ¹Laboratoire Kastler-Brossel, ENS, 24 rue Lhomond, 75005 Paris, France ²SKLQOQOD, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, People's Republic of China ³Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands ⁴Department of Physics, Bar Ilan University, Ramat Gan 52900, Israel (Received 18 June 2004; published 30 September 2004)

p-wave Feshbach molecules

J. P. Gaebler,* J. T. Stewart, J. L. Bohn, and D. S. Jin JILA, Quantum Physics Division, National Institute of Standards and Technology and Department of Physics, University of Colorado, Boulder, CO 80309-0440, USA (Dated: March 3, 2007)





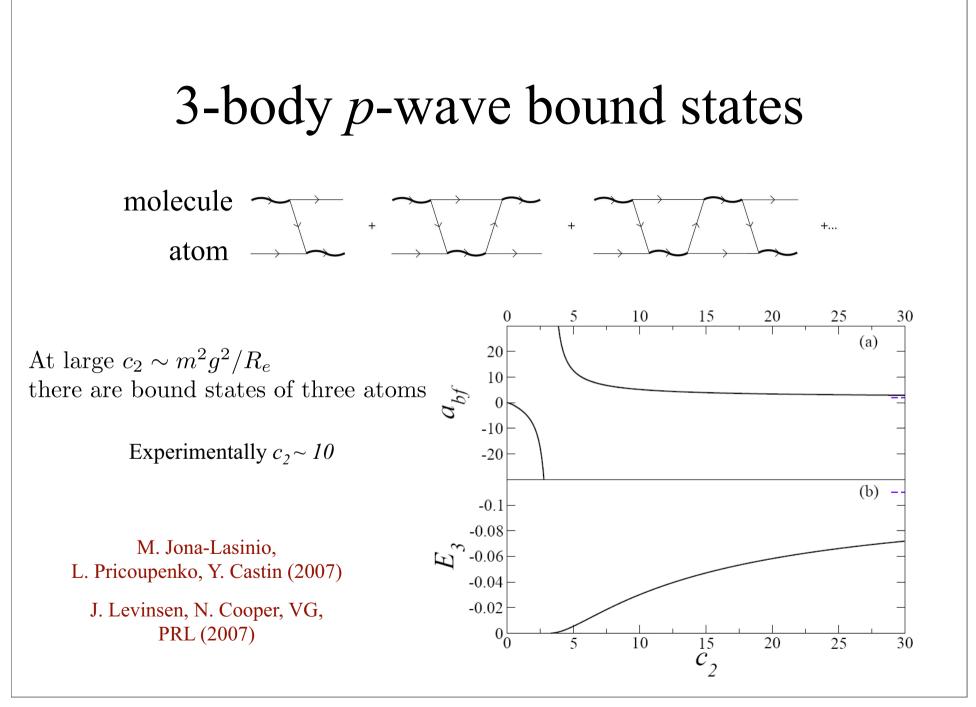


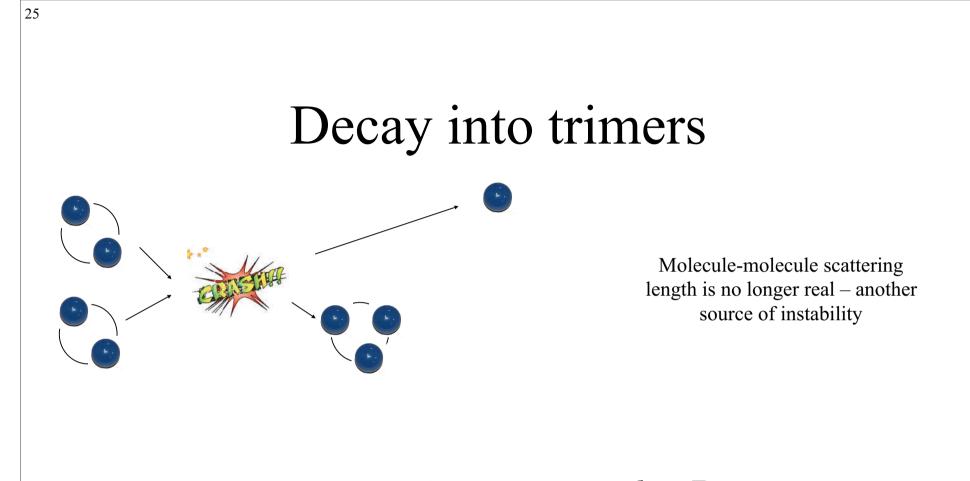
3-body recombination, 2D *p*-wave (small molecules)

$$\Gamma = nv\sigma \sim \frac{1}{a^3} v R_e^2 \frac{R_e}{v} \frac{\hbar}{mR_e^2} = \frac{\hbar}{ma^2} \frac{R_e}{a} \frac{\Lambda}{1/500}$$
10KHz

Alternative picture:

$$\Gamma = nv\sigma = \frac{1}{a^3} v \frac{v_f}{v} R_e^2 \sim \frac{\hbar}{ma^2} \frac{R_e}{a}$$
The atom-molecule hybridization rate is also
$$\frac{\hbar}{ma^2} \frac{R_e}{a}$$
Inelastic amplitude
J. Levinsen, N. Cooper, VG, PRL (2007)
L. Jona-Lasinio, L. Pricoupenko, Y. Castin, (2007)





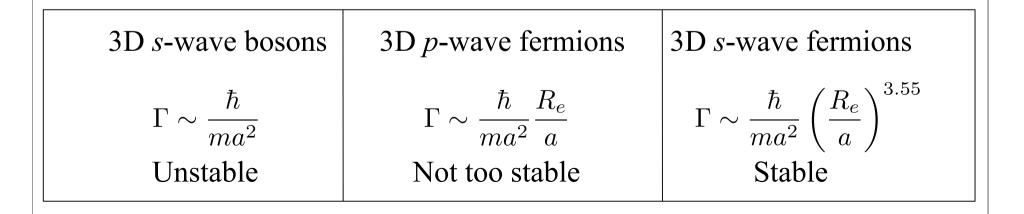
$$\Gamma = nv\sigma = \frac{1}{a^3}v\frac{v_f}{v}R_e^2 \sim \frac{\hbar}{ma^2}\frac{R_e}{a}$$

Same lifetime as the collapse into deeply bound molecular state

Stability of 2D *p*-wave condensate

$$\Gamma \sim \frac{\hbar}{ma^2} \left(\frac{R_e}{a}\right)^{2d+2\gamma-2} = \frac{\hbar}{ma^2} \left(\frac{R_e}{a}\right)^{2+2\gamma}$$

What is γ in 2D *p*-wave?



Conclusions

• *p*-wave in 2D: a path to new exotic physics

• $p_x + ip_y$ is formed robustly by single species fermions and, at the same time, is needed for this new physics

•The lifetime of *p*-wave molecules in 3D is short, but perhaps is not hopelessly short

•In 2D, the lifetime is not yet known

•Once the topological state is created, its non-Abelian excitations can be directly probed.