

1859-25

Summer School on Novel Quantum Phases and Non-Equilibrium Phenomena in Cold Atomic Gases

27 August - 7 September, 2007

Dissipationless Higgs Boson in Fermionic condensates

Roman Barankov Boston University

Roman Barankov Boston University, USA

Dissipationless Higgs Boson in Fermionic Condensates

7 Sept. 2007

Outline

Collective modes in Bose and Fermi superfluids

Amplitude mode (Higgs boson): different approaches

- Dynamical regimes of pairing: role of initial states
- The dissipationless Higgs mode

Relevance to experiments

Open questions and future directions

Conclusion

Probing excitation spectrum of Fermi superfluids

$$\mathcal{H} = \sum_{\mathbf{p}\sigma} \xi_{\mathbf{p}} a_{\mathbf{p}\sigma}^{\dagger} a_{\mathbf{p}\sigma} - \lambda(t) \sum_{\mathbf{pqd}} a_{\mathbf{p+d/2\uparrow}}^{\dagger} a_{-\mathbf{p+d/2\downarrow}}^{\dagger} a_{-\mathbf{q+d/2\downarrow}} a_{\mathbf{q+d/2\uparrow}} a_{\mathbf{q+d/2\downarrow}} a_{\mathbf{q$$

Single-particle excitations, by RF spectroscopy

- Collective modes

Bogoliubov-Anderson mode, by perturbation of the density $\delta \mu(t)$

Amplitude mode (no experiments so far), by changing the coupling at Feshbach resonance

$$\lambda(t) = \lambda_s \theta(-t) + \lambda_f \theta(t)$$

Formulation of the problem

$$\mathcal{H} = \sum_{\mathbf{p}\sigma} \xi_{\mathbf{p}} a^{\dagger}_{\mathbf{p}\sigma} a_{\mathbf{p}\sigma} - \lambda(t) \sum_{\mathbf{pqd}} a^{\dagger}_{\mathbf{p}+\mathbf{d}/\mathbf{2}\uparrow} a^{\dagger}_{-\mathbf{p}+\mathbf{d}/\mathbf{2}\downarrow} a_{-\mathbf{q}+\mathbf{d}/\mathbf{2}\downarrow} a_{\mathbf{q}+\mathbf{d}/\mathbf{2}\uparrow} \\ \xi_{\mathbf{p}} = \mathbf{p}^{\mathbf{2}}/2m - \mu$$

$$\lambda(t) = \lambda_s \theta(-t) + \lambda_f \theta(t)$$

Initial condition: BCS or normal state

Dynamics induced by non-adiabatic switching of attractive interactions

Goal: Time-dependence of the pairing amplitude

$$\Delta(t) = \lambda(t) \sum_{\mathbf{p}} \langle a_{\mathbf{p}\uparrow}(t) a_{-\mathbf{p}\downarrow}(t) \rangle$$

Time scales in the problem

Bogoliubov-de Gennes equations

Reduced BCS Hamiltonian

$$\mathcal{H} = \sum_{\mathbf{p}\sigma} \xi_{\mathbf{p}} a_{\mathbf{p}\sigma}^{\dagger} a_{\mathbf{p}\sigma} - \lambda(t) \sum_{\mathbf{p}q} a_{\mathbf{p}\uparrow}^{\dagger} a_{-\mathbf{p}\downarrow}^{\dagger} a_{-\mathbf{q}\downarrow} a_{\mathbf{q}\uparrow}$$

zero-momentum pairs - spatially uniform dynamics

Truncated Hilbert space: BCS wave function $|\Phi(t)\rangle = \prod_{\mathbf{p}} \left(u_{\mathbf{p}}(t) + v_{\mathbf{p}}(t)a_{\mathbf{p}\uparrow}^{+}a_{-\mathbf{p}\downarrow}^{+} \right) |0\rangle$ $i\partial_{t} \begin{pmatrix} u_{\mathbf{p}} \\ v_{\mathbf{p}} \end{pmatrix} = \begin{pmatrix} \xi_{\mathbf{p}} & \Delta \\ \Delta^{*} & -\xi_{\mathbf{p}} \end{pmatrix} \begin{pmatrix} u_{\mathbf{p}} \\ v_{\mathbf{p}} \end{pmatrix}$ Self-consistency

 $\begin{array}{cc} \text{Self-consistency}\\ \text{condition} & \Delta(t) = \lambda(t) \sum_{\mathbf{p}} u_{\mathbf{p}}(t) v_{\mathbf{p}}^{*}(t) \\ \tau_{0} \ll t \ll \tau_{\epsilon} & \nabla_{\mathbf{r}} \Delta = 0 \end{array}$

Dissipationless, spatially uniform and non-linear dynamics

Pseudospin representation of BCS problem

Dissipative dynamics between the stationary and the equilibrium state

System out of equilibrium

Initial BCS state + small variation of interaction $\lambda(t) = \lambda_0 \pm \delta \lambda \,\theta(t)$

Initial normal state + turning on the interaction $\lambda(t) = \lambda \theta(t)$

Initial BCS state + switching off the interaction $\lambda(t) = \lambda \theta(-t)$

Our problem: Parametric range of all initial BCS-like states step-like interaction $\lambda(t) = \lambda_s \theta(-t) + \lambda_f \theta(t)$

Excitation by small variationof interaction $\lambda(t) = \lambda_0 \pm \delta \lambda \, \theta(t)$

Volkov, Kogan 1974; Yuzbashyan, Tsyplyatyev, Altshuler, 2006

 $\mathcal{H} = \sum_{\mathbf{p}\sigma} \xi_{\mathbf{p}} a_{\mathbf{p}\sigma}^{\dagger} a_{\mathbf{p}\sigma} - \lambda(t) \sum_{\mathbf{p}q} a_{\mathbf{p}\uparrow}^{\dagger} a_{-\mathbf{p}\downarrow}^{\dagger} a_{-\mathbf{q}\downarrow} a_{\mathbf{q}\uparrow}$ $\Delta(t) = \lambda \sum_{\mathbf{p}} r_{\mathbf{p}}^{+}(t)$

Linear analysis of the Bloch (BdG) equations

$$\Delta(t) = \Delta_a + A(t) \sin(2\Delta_a t + \alpha), \quad A(t) \propto t^{-1/2}.$$

collisionless "Landau damping"

Higgs mode decays algebraically due to coupling to the continuum of excited pair states

How to make Higgs non-decaying?

Energy dependence of the interaction

 $\mathcal{H} = -\sum_{\mathbf{p}} 2\epsilon_{\mathbf{p}} s_{\mathbf{p}}^{z} - \sum_{\mathbf{pq}} \lambda_{\mathbf{pq}}(t) s_{\mathbf{p}}^{-} s_{\mathbf{q}}^{+}$ Amplitude mode enters the gap

Large perturbation

Synchronization of paired states may stabilize Higgs mode

"constructive interference"

$$\Delta(t) = \lambda \sum_{\mathbf{p}} r_{\mathbf{p}}^+(t)$$

Dynamics at long times (synchronized)

Synchronized regime (analytics) Initial normal state: turning on the interaction $\lambda(t) = \lambda \theta(t)$ Trivial solution $\Delta(t) = 0$ is unstable! Fluctuations destabilize the system $\Delta(t) = \Delta_{+} \mathrm{dn} \left[\Delta_{+}(t - t_{0}), k \right]$ 0 0 0.5 0.5 $\Delta_/\Delta_=0.01$ $k^2 = 1 - \Delta_-^2 / \Delta_+^2$ Limiting solution 20 10 30 Time $\times \Delta_0$ $\Delta(t) = \Delta_0 / \cosh[\Delta_0(t - t_0)]$

Physical solution depends on the strength of fluctuations, e.g. through temperature It corresponds to soliton trains

Pseudospin dynamics (ansatz)

Synchronization of energy states

Syncronized regime (numerics)

Time dependence of individual states: rotation around local magnetic field

 $\omega_{\mathbf{p}} = \langle d\phi_{\mathbf{p}}/dt \rangle = (\phi_{\mathbf{p}}(\tau) - \phi_{\mathbf{p}}(0))/\tau$

No energy dispersion!

Dephased regime (analytics)

Volkov, Kogan 1974; Yuzbashyan, Tsyplyatyev, Altshuler, 2006

Small variation of interaction

 $\lambda(t) = \lambda_0 \pm \delta \lambda \,\theta(t)$

$$\Delta(t) = \Delta_a + A(t)\sin(2\Delta_a t + \alpha), \quad A(t) \propto t^{-1/2}$$

collisionless "Landau damping"

Switching off the interaction - initial BCS state

RB, Levitov, 2006; Yuzbashyan, Dzero, 2006

$$\lambda(t) = \lambda \theta(-t)$$

$$\Delta(t \gg \Delta_s^{-1}) \propto (\Delta_s t)^{-1/2} e^{-2\Delta_s t}$$

"over-heating" the system

Regimes of pairing: analytics

RB, Levitov, 2006 based on work by Yuzbashyan, Tsyplyatyev, Altshuler, 2006

Integrals of motion and Lax

vector

Richardson, Sherman 1964; Cambiaggio, Rivas, Saraceno, 1997; Yuzbashyan, Altshuler, Kuznetsov, Enolskii, 2005

$$\begin{aligned} R_{\mathbf{p}} &= \mathbf{L}_{\mathbf{p}} \mathbf{s}_{\mathbf{p}} \\ \mathbf{L}_{\mathbf{p}} &= \hat{\mathbf{z}} + \lambda \sum_{\mathbf{p}' \neq \mathbf{p}} \frac{\mathbf{s}_{\mathbf{p}'}}{\epsilon_{\mathbf{p}} - \epsilon'_{\mathbf{p}}} \\ \mathbf{L}^{2}(\epsilon_{\mathbf{p}}) &= \mathbf{0} \end{aligned}$$

Number of complex roots defines classes of solutions

Yuzbashyan, Tsyplyatyev, Altshuler, 2006

Synchronized: Δ_+ two zeros (A) Δ_- Dephased: Δ_a one (B) and Δ_a zero (C)

Asymptotic dynamics (synchronized)

24

Finite temperature phase diagram

RB, Levitov, unpublished

BCS gap (weak interactions)

$$\Delta = 0.49 E_F e^{-1/g}$$
$$g = \frac{2}{\pi} k_F |a|$$

Variation of the scattering length

$$\delta a/a \approx \pm k_F a$$

Role of energy-dependent interaction

$$\mathcal{H} = -\sum_{\mathbf{p}} 2\epsilon_{\mathbf{p}} s_{\mathbf{p}}^{z} - \sum_{\mathbf{pq}} \lambda_{\mathbf{pq}}(t) s_{\mathbf{p}}^{-} s_{\mathbf{q}}^{+}$$

$$\lambda_{\mathbf{pq}}(t) = \lambda(t) \left(a_1 + a_2 v_{\mathbf{p}} v_{\mathbf{q}} \right) \qquad \qquad v_{\mathbf{p}} = \frac{\gamma}{\sqrt{\gamma^2 + \epsilon_{\mathbf{p}}^2}}$$

Two limits:

constant interaction $a_1 = 1, a_2 = 0$ Separable interaction $a_1 = 0, a_2 = 1$

Role of integrability in the pairing dynamics

The dissipationless Higgs mode

Eigen-equation for the collective mode

$$\delta \Delta_{\mathbf{p}\omega}^x = \frac{1}{2} \sum_{\mathbf{q}} \frac{\lambda_{\mathbf{pq}} \delta \Delta_{\mathbf{q}\omega}^x}{\sqrt{\epsilon_{\mathbf{q}}^2 + \Delta_{\mathbf{q}}^2}} \frac{\epsilon_{\mathbf{q}}^2}{\epsilon_{\mathbf{q}}^2 + \Delta_{\mathbf{q}}^2 - \omega^2/4}$$

Red line $a_1 = 1, a_2 = 0$

Where to observe? Feshbach resonance $g = \frac{2}{\pi} k_F |a|$ $\Delta = 0.49 E_F e^{-1/g}$ Atomic scattering length near FR Dynamical control of interactions How to observe? Fast projection: probe of pairing correlations proposed and realized by JILA and MIT groups (2004) Condensate fraction of molecules - pairing correlations **Proposed method:** $\delta a/a \approx \pm k_F a \longleftarrow$ Phase boundaries $k_F a(t)$ BCS variable time FR Time BEC 33

Physical parameters				$B_{FR} \approx 8$	$850\mathrm{G}$	
Typical sample	e: Particle	Particle density		$n \approx 10^{13} \mathrm{cm}^{-3}$		
	Fermi e	energy	E_{I}	$_{T} pprox 0.5 \mu\mathrm{K}$		
Interaction:Scattering length of atoms $ a \gtrsim 100 \mathrm{nm}$ At lower densities marginally weak BCS (?)						
Weak coupling BCS $g = \nu \lambda = \frac{2}{\pi} k_F a \approx 0.3$ (strong in experiments!) $T_c \approx 0.3 E_F e^{-1/\lambda} \approx 0.01 E_F$						
Time scales:	period	$ au_\Delta \simeq \hbar$	$\bar{n}/\Delta_0 \approx$	$2 \mathrm{ms}$		
quasi-particle relaxation time $\tau_{\xi \simeq \Delta} \simeq \hbar E_F / \Delta_0^2 \approx 200 \mathrm{ms}$					IS	
Spatial scales:	Spatial scales: Correlation length $\xi = \hbar^2 k_F / m \Delta_0 \simeq 24 \mu \mathrm{m}$					
	Sample size		$L\simeq 20\mu$	um		

It may be possible to observe the pairing dynamics

Possible sources of dissipation **Uniform geometry:**

 $\xi \simeq k_F^{-1}$ and thus inhomogeneous dynamics Quasiparticle relaxation and Higgs frequency are

close ($\simeq \hbar/E_F$) at unitarity

At unitarity sound and Higgs mode couple and also in trapped geometry:

Spatial inhomogeneity of the order parameter

 $\Delta \simeq E_F$

Conclusions:

- The pairing amplitude mode (Higgs boson) is characteristic for Fermi superfluids - no analog of this mode in Bose systems
 - Excitation of the Higgs boson in fermionic superfluids:
 - Nonlinear excitation induced by changing the interaction strength
 - Dephased and synchronized regime
 - Two dynamical transitions between underdamped, damped and overdamped dynamics
 - The dynamics is robust with respect to the energy dependent interaction
 - Small perturbation (linear) at the FR
 - Higgs mode is Landau-damped (algebraic decay) for constant interaction
 - Higgs mode may become non-decaying for the energydependent interaction

Open questions and future directions

Uniform dynamics:

Formation of a superfluid "seed" (quantum flucts.)

- Role of integrability in the dynamics
- Dynamics in the regime of strong interactions for realistic models
- Spatial dynamics:
 - Formation of a paired state in space (topological defects, Kibble-Zurek mechanism)

Response to non-linear external drive

Experiments: cold atoms