Cloud Tracking in Cloud-Resolving Models

R. Plant

Department of Meteorology, University of Reading, UK.

r.s.plant@reading.ac.uk

1. Outline

We describe a new technique to investigate statistical properties of the lifecycles of cumulus clouds.

Cumulus clouds persist for precisely one timestep in largescale model parameterizations. Ultimately, could we introduce a simple representation of the cumulus lifecycle?

2. Method

We track each individual cloud online at each timestep of the cloud-resolving model. This is not cheap but is a simple, well-tested and very robust method.

Stage 1: Identify Clouds

We identify the cloud core by defining a point as cloudy if it has positive buoyancy; positive cloud liquid water and positive vertical velocity.

Neighbouring cloudy gridpoints are connected together. For a viable cloud, we require at least two points, and that the structure persists for at least 5 minutes.

Stage 2: Connections

We establish all connections to clouds at the previous timestep that overlap or are adjacent to current clouds. The number and sense (old \leftrightarrow new) of connections identifies births, deaths, continuations or splits and mergers.

Figure 1 Example of part of CRM grid. The red cells are cloudy points. The green halos show the regions where we search for connections to clouds at previous timestep.

Stage 3: Bookeeping

At each timestep, store cloud size, mass flux, precipitation rate... To deal with splits and mergers, define f^c to be fraction of old cloud element i contributing to the current

On the death of a cloud, we can reconstruct its full cloud lifecycle extending back to birth of the first contributing cloud element.

3. Simulation Analysed

We have used the UK Met Office large-eddy model in cloudresolving mode to simulate radiative-convective equilibrium with a fixed SST and an imposed cooling of the troposphere at 4K/day. The model is run for 20 days to get to equilibrium state and then for another 13 days to collect statistics for 3738

The horizontal resolution was 2km on a 64x64km domain with around 10 cloud cores present in domain at any instant.

4. Lifetime distribution

55% of clouds are "simple", having no splits or mergers. Distribution in red, with mean $lifetime=30min \pm 28 min$

Distribution of all clouds in green, with mean lifetime= $55min \pm 47 min$

6. What Affects Lifetime?

To the right is the average lifetime of a cloud for a given lifecycle-time-mean mass flux at 2.5km

Large scatter but works well for the simple clouds. Mass flux known to a parameterization

7. Composite Cloud

Normalize by lifetime and time-mean mass flux

 $(q_l + q_i)zdz$ Centre of mass

5. Conclusions

- •New tool to generate cloud life cycle statistics
- •Significant minority of cloud undergo splits and mergers, increasing their lifetimes
- •Lifetime increases with lifetime-averaged mass flux
- •Longer-lived clouds have much stronger variation of properties through their lifecycle