SIMULATIONS OF X-BAND THUNDERSTORMS RADAR OBSERVATIONS

PUJOL O¹., N. BON², C. COSTES², H. SAUVAGEOT¹, J.-P. ARTIS² 1 Université Paul Sabatier, Laboratoire d'Aérologie, Toulouse, France 2 Thalès Systèmes Aéroportés, Brest, France

Civil aviation uses X-band (f = 10 GHz) airborne radar with large aperture ($\theta_{3 dB} > 1^{\circ}$) to identify precipitating system at very long distance (r > 100 km) and estimate the hazard. QUESTION: What would see such a X-band airborne radar?

Simulation of radar observations and theoretical considerations

Thunderstorm modeling

We extend to ice phases the model developed for warm clouds (*Pujol et al., 2007a, 2007b*):

1) **X(x, z) = X(z)G(x)** where :

- $X \equiv R \text{ (mm.h}^{-1} \text{) for precipitation,}$
- $X \equiv M$ (g.m⁻³) for droplets and crystals,
- $G = \exp(-x^2/L^2)$ with L the horizontal extension of the modeled thunderstorm.

2) $N(D) = N_0(D) D^{\mu} \exp(-\Lambda D)$ is the size distribution used:

• *D* is hydrometeor diameter and *N* the volumic concentration per class of diameter,

• Hail: $\mu = 0$, $N_0 = 115\Lambda^{3.63}$, and $\Lambda = \ln(88/R)/3.45$ (*Cheng and English 1983*)

Radar observation simulations

The radar characteristics are:
1) frequency *f* = 10 GHz (*X*-band),
2) large aperture of 3°dB

The simulation is fully completed when the whole target has been covered.

Theoretical considerations

Some ideas relative to X-band observations should be kept in mind:
1)Although undetectable, cloud droplets are a non negligible source of attenuation (*Pujol et al. 2007a*),

2) Hail reflectivity in X-band can be lower than rain reflectivity in S-band

• Hydrometeor characteristics are in the Table (*Pruppacher and Klett 1997*).

	$D_{min} - D_{max}$ (mm)	ho (g.cm ⁻³)
Ice crystal	0.1 – 2	0.9
Snow	1 – 5	< 0.2
Graupel	0.5 - 5	0.2 – 0.8
Hail	5 - 50	> 0.8
Rain	0.5 - 5	1
Droplet	1 – 50 (µm)	1

 \Rightarrow Hazard can thus be underestimated by pilots, which could be dramatic !

observed; if *r* > 200 km, beamwidth is greater than 10 km.

CONCLUSION	PERSPECTIVES	REFERENCES
X-band observation and hazard estimation by pilots are problematic since:	The importance of civil aviation justifies such study and the further ones:	Cheng L. and English M., 1983: A relationship between hailstone concentration and size. <i>J. Atmos. Sci.</i> , 40, 204 - 213.
1) reflectivity Z(dBZ) is degraded by attenuation due to cloud and precipitation,	 1) unambiguous hail detection method is necessary, 2)ground clutter contamination has to be corrected , 	Pruppacher H. and Klett J.D., 1997: Microphysics of clouds and precipitation. Kluwer Academic Publisher, 943 pp.
2) Hail detection is limited due to the first Mie Mode, so that $Z_{hail} < Z_{rain}$	 3) squall lines and mesoscale systems should be investigated, 4) a time component should be added in our static 	Pujol O., F'eral L., Sauvageot H., and Georgis J.F., 2007a: Degradation of radar reflectivity by cloud attenuation at microwave frequency. <i>J. Atmos.</i> Oceanic Technol. 24, 640 - 657
An other problem arises from long distance ($r > 200$ km) with large aperture ($\theta_{3 dB} = 3^{\circ}$) observations:	model.	Pujol O., Sauvageot H., and Georgis J.F., 2007b: Influence of drizzle on <i>Z-M</i> relationships in warm clouds. <i>Atmos. Res.</i> , in press.
3) ground clutter ontaminates greatly the reflectivity.	Should X-band be avoided and replaced by S-band?	Sauvageot H., 1992: Radar Meteorology, Artech House, 366pp.