Application of the Enhanced Fujita Scale in Damage Surveys

James G. LaDue¹, Ed Mahoney¹, Gregory J. Stumpf^{2,3}, Kiel L. Ortega²

¹NOAA/National Weather Service/Warning Decision Training Branch, Norman, Okalahoma, USA ²Cooperative Institute for Mesoscale Meteorological Studies/University of Oklahoma, Norman, Oklahoma, USA

³NOAA/National Weather Service/Meteorological Development Laboratory, Norman, Oklahoma, USA

Objectives of the new scale

- To provide more guidance to damage surveyors in the form of more Damage Indicators (DI).
- To adjust the wind speed estimates closer to our best understanding.

A Brief Description of the EF-Scale

- For each DI, a Degree of Damage (DoD) describes the damage and an associated range of wind speeds.
 - The lowest DoD indicates the level at which damage begins.
 - The highest DoD corresponds to a wind speed in the EF5 range, or ٠ the level at which the DI has been completely destroyed at a lower wind speed.

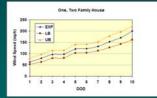


FIG 1. DODs for a One- and Two Family House vs. Lower Bound (LB) wind speed, Expected wind speed (EXP), and Upper Bound wind speed (UB).

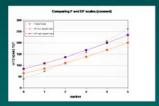


FIG. 2: Lower- and upper-bound wind speed vs. rating for the EF-Scale in solid lines. The lower bound wind speed vs. rating is indicated for the F-Scale in a dotted line.

Damage Indicators (DI)

- The "FR12" DI, known as single- and double- family U. S. residences, was the primary basis for the original Fujita Scale (F-Scale).
- The current list of 28 DIs is mostly U.S. Centric.
- The EF-Scale is designed to accommodate new Damage Indicators.
- New DIs can be added to include man-made and natural objects from other locations worldwide (e.g., modern residential housing in Northern Italy, automobile sedans, empty railroad boxcars, etc.).

Wind Speed Estimates

- Fujita's original wind speed estimate for the "FR12" DI have been revised.
 - The higher end speeds have been greatly reduced.
 - The lower end speeds have been slightly increased.
- Wind speed estimates were developed for the additional DIs.
- Wind speed estimates are tagged to each DI via Degrees of Damage (DoD).
- Revised wind speed estimates can be made at any time science provides them, and the original DoDs would remain unchanged.

F-Scale vs. EF-Scale for FR12

- For FR12, there is no difference in the way a damage surveyor will determine the • Degree of Damage between both scales. Thus,
 - a home rated F1 is rated EF1.
 - a home rated F2 is rated EF2, and so on,
 - a home rated F5 is rated EF5.
- The only difference being that the wind speed estimates for that particular DoD has been adjusted

Challenge

To effectively conduct a survey with a new system without suffering from increased workload.

Solutions

- Two online asynchronous lessons were developed by the NWS Warning Decision Training Branch with help from Subject Matter Experts (SME).
- On online BB forum to exchange lessons learned from applying the EF-Scale in surveys.
- A Windows-based "EF-Kit" that works on a laptop PC, or a Windows CE based PDA with a 480 X 680 pixel display.

Opportunities for Advanced Damage Survey Techniques

- A greater precision in damage surveys when the EF-scale is combined with GISbased surveying techniques
- For several surveys in 2007, the following equipment was used (all time synched):
- · Laptop equipped with mapping software (e.g., DeLorme).
- PDA equipped with Bluetooth, GPS logger software, and EF-Kit.
- Handheld Bluetooth GPS receiver.
- Digital Camera
- Once photographs are "geo-tagged", can be ingested into Google Earth™.
- The photos and satellite images can be used to reconstruct a GIS-based damage survey

Potential Worldwide Application

- ATTENTION ESSL!
- The F-Scale is U.S. Centric.
- The EF-Scale can be expanded to included non-U.S. DIs.
- The DoDs will never change. That is what is recorded.
- The wind speeds may change, but there is no reason to re-survey.

This work was partially funded by NOAA/University of Oklahoma Cooperative Agreement #NA17RJ1227. The statements, findings, conclusions, and recommendations are those of the authors and do no necessarily reflect the views of NOAA or any of its organizations.

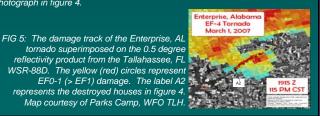

Enterprise, Alabama (1 March 2007)

FIG 4: Aerial photograph marked A2 in figure 3 showing two FR12 DIs destroyed by the tornado.

FIG 3: A GPS track of one segment of an aerial survey of the Enterprise, AL tornado. The arrow labeled A2 shows the location of the photograph in figure 4.

Minco, Oklahoma (19 August 2007)

FIG 6: (left) Digital geotagged photos imported into Google Earth⁷

FIG 7: One "enhanced" image, which is placed into Google Earth™ with image three-dimensionally oriented in direction photograph was taken