
Motivation and Background
The motivation for this study is the question of how the interaction of an 
isolated updraft with a vertically-sheared flow results in the formation of a 
vortex about a vertical axis. Though extensive literature exists on the
evolution of the vorticity within an incipient supercell, the evolution of a
vortex apparently has not been considered.  

Whenever an isolated updraft exists in a sheared environment, two
processes, that happen to be closely entwined with one another, occur:  
The horizontal vorticity of the ambient air is tilted into the vertical by the
updraft, and a non-hydrostatic pressure field develops in and around the
updraft. The development of vertical vorticity in the updraft has been shown
to be due to the tilting of horizontal shear vorticity into the vertical (e.g., 
Davies-Jones, 1984). The presence of the perturbation pressure field is tied
to rotation (spin forcing), deformation (splat forcing), and the vertical
buoyancy gradient (e.g., Rotunno and Klemp, 1982; Bradshaw and Koh, 
1981; Davies-Jones, 2002).

The well-known display of the vortex lines that are tilted into the vertical
(Fig. 1a, b), albeit correct from a vorticity perspective, disguises the process
of how the initially vertically sheared flow is evolving into a vortex.  Also 
note that in this picture, the azimuthal vorticity surrounding the updraft, is
neglected.  

Vortex Characteristics
A truly vortical flow is characterized by pure vorticity, zero deformation, and 
zero divergence.  It can readily be shown that such a flow represents a 
vortex which features shear and curvature vorticity, both contributing to 
equally large parts.  Such a flow is said to exhibit „solid-body“ rotation. The
cores of most natural vortices strongly resemble that of a „solidly“ rotating
fluid. In any event, a vortex requires the presence of both, shear and 
curvature vorticity. I.e., mere shear or mere curvature vorticity are not
associated with a vortex. Sheared motion is a superposition of shearing
deformation and solid-body rotation.

Also note that vorticity cannot be used to diagnose a vortex.  Vorticity will 
be present even if there is mere wave motion (curvature vorticity), or if
there is sheared motion (shear vorticity). The formal definition and 
diagnosis of a vortex happens to be quite complicated (e.g., Haller, 2005).  

Usually, two extremes are considered when analyzing the development of 
rotation in a supercell thunderstorm.  These are an inflow containing
purely streamwise vorticity (helical inflow), associated with a (semi-) 
circular hodograph, and an inflow containing purely crosswise vorticity, 
associated with a straight-line hodograph.
Davies-Jones (1984) has shown that only in the streamwise-vorticity case, 
the vorticity will be tilted in such a way that the updraft center and the
vertical-vorticity center coincide.  In case of crosswise vorticity, the vorticity
is accumulated at the flanks of the cell.  This behavior can be visualized
with the aid of vortex lines that are tilted upward by the updraft (Fig 1 a,b).  
However, whether the resultant vertical vorticity is associated with shear, 
curvature, or a coherent vortex cannot be inferred from this analysis. 

Shear and curvature vorticity
Vorticity can be decomposed into shear and curvature the components, as 
mentioned above.  With the assumption of no baroclinic generation of
vertical vorticity, and a vanishing Coriolis parameter, the tendency
equations for the vertical shear and curvature vorticity in height coordinates
are given by:

See table on the right for the meaning of the
variables. (s,n) are the unit vectors tangential 
and normal to the streamlines, respectively. These equations are similar to 
the common vorticity equation, in that they contain divergence terms (1st 
terms of the rhs) and tilting terms (2nd terms on the rhs).  The last two
terms only differ in the signs, which identifies them as interchange or
conversion terms.

Important conclusions are that

• Convergence cannot change the nature of the vorticity (shear, 
curvature)

• Vertical shear vorticity results if crosswise vorticity is tilted

• Vertical curvature vorticity results if streamwise vorticity is tilted.

Interpretation
With the aid of these results, the details of the tilting process can be
elucidated. Assume an unstable stratification (decreasing entropy with
height) and let the isentropes be perturbed by an axisymmetric
convective updraft, as showd in Fig. 2.  On every isentropic surface, 
the flow is going straight atop the humps in the individual isentropes
(as in Davies-Jones, 1984; Davies-Jones, 2000).
Making a horizontal cross section through the stack of perturbed
isentropes (Fig. 2) yields an onion-like structure, with increasing
entropy towards the center.  
In case of a straight-line hodograph, only the velocity magnitude varies
on the different isentropes.  This doesn‘t change as the flow is passing
over the isentropic “humps“. Looking at the horizontal velocity
components in the cross section, it becomes apparent that all vertical
vorticity is manifest as shear (blue arrows in Fig. 3a). If the ambient 
flow is helical, i.e., if the wind veers with height from easterly to 
westerly directions, the cross section reveals that only curvature
vorticity is created by tilting (Fig. 3b), as predicted by the shear- and 
curvature-vorticity equations.  The blue color indicates cyclonic
vorticity, the red color indicates anticyclonic vorticity. These results are
entirely consistent with Davies-Jones‘s helicity concept from 1984. 

Conclusion and Further Research
In order to sustain a vortex in the supercell‘s updraft, it is concluded
that part of the shear vorticity has to be converted to curvature
(crosswise case) and that part of the curvature vorticity has to be
converted to shear (streamwise case).  This implies that the conversion
terms are instrumental in the genesis of a vortex in the incipient
Supercell. It is suggested that the sign of the conversion terms in the
right-moving storm split member in the straight-line case is opposite to 
that in the single right mover growing in a streamwise-vorticity
environment. Soon, results of numerical simulations which are
currently being carried out, will be presented, showing the behavior of 
the conversion terms in both cases. 
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Fig. 1: Vortex lines in streamwise-vorticity (a) and crosswise-vorticity (b) cases.
Adapted and modified from Klemp (1987).

a) b)

Fig. 2: Horizontal 
cross section through
isentropes perturbed
by a convective updraft. 

a) b)

Fig. 3: Horizontal velocity around the isentropic peak. a) cross-
wise Vorticity environment; b) streamwise-vorticity environment.

This implies that neither in the streamwise, nor in the crosswise
vorticity case, a vertical vortex results from tilting alone.
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