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Abstract

The paper, being a continuation of the investigations [1, 2, 3, 4, 5], where the

approach to constructing the spherical block model of lithosphere dynamics and seis-

micity is described, actually represents the review of developed modifications of the

model and the discussion of their pros and cons. In the first modification, so called

“modification without depth” [2, 3, 5], it is assumed that all characteristics of a struc-

ture’s point are determined only by its coordinates and do not depend on the depth

of the spherical layer. The modification used in [1, 4] exploits the homogeneity of the

lithosphere with respect to its depth and the identity of the depths of all blocks as

well as of properties of all parts of a block (a fault). In the present paper, a new

modification of the spherical model is introduced. Its main novelty is in an attempt of

taking into account the inhomogeneity of the lithosphere by means of a) specification

of different depths for different blocks and b) realization of an opportunity of changing

fault properties depending on the fault depth. The brief description of the model with

specifying peculiarities of different modifications is given. A comparative analysis of

simulation results is performed. Results of numerical experiments include the qualita-

tive information on displacements of plates, on the character of their interaction along

boundaries, on the spatial distribution of the strongest events. Synthetic earthquake

catalogs reveal some patterns of observed seismicity. The dependence of synthetic seis-

micity properties on model parameters is studied. It is established that, according to

some characteristics, dynamics and seismicity of the global system of tectonic plates

is more adequately simulated taking into account the inhomogeneity of the lithosphere.

1 Introduction

Study of seismicity with the statistical and phenomenological analysis of real earthquake

catalogs has the disadvantage that the reliable data cover, in general, a time interval of

about one hundred years or less. This time interval is very short in comparison with the

duration of tectonic processes responsible for the seismic activity. Therefore, the patterns

of the earthquake occurrence identifiable in a real catalog may be only apparent and may

not repeat in the future. In this connection, mathematical models of seismicity, i.e., of

temporal-spatial earthquake sequences, are important tools that yield synthetic catalogs,

which may cover a very long time interval that allows us to acquire more reliable estimates
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of parameters of a seismic flow and to search for premonitory patterns preceding large events

[6]. The model should be adequate in the sense that it reproduces properties of observed

seismicity (primarily the Gutenberg — Richter law on frequency-magnitude (FM) relation,

migration of events, seismic cycle and so on). Only then it is possible to use a synthetic

catalog for estimating some characteristics of a seismic flow. The problem of testing the

model and comparing simulation results with real data is of independent interest.

There exist rather many approaches to modeling lithosphere processes (see, e.g., [6, 7]).

The present paper continues the investigations of [1, 2, 3, 4, 5], where the approach to con-

struction and parallelization of the spherical block model is described in detail and different

aspects of application of some model modifications to studying dynamics and seismicity of

both relatively small and global systems of tectonic plates are discussed.

In the block models, a seismically active region is represented as a system of rigid blocks

that form a layer of a fixed thickness between two horizontal planes or concentric spheres.

Lateral boundaries of the blocks consist of segments of infinitely thin faults. The system

of blocks moves as a consequence of the prescribed motion of the boundary blocks and

underlying medium. The displacement of a block may be described by three parameters

(the two-dimensional model) as well as by six parameters (the three-dimensional model).

The displacements of blocks at any time are defined so that the system is in a quasi-static

equilibrium state. Because the blocks are perfectly rigid, all deformations take place in the

fault zones and at the block bottoms. The interaction between the blocks is visco-elastic (a

“normal state”), so long as the ratio of the stress to the pressure is below a certain strength

level. When this level is exceeded in some part of a fault, a stress-drop (a “failure”) occurs

in accordance with the dry friction model. The failures represent earthquakes. Immediately

following the earthquake for some period of time, the corresponding parts of the faults are

in a “creep state”. This state differs from the normal one because of the more rapid growth

of inelastic displacements and continues until the stress falls below a given level. A synthetic

earthquake catalog is produced as a result of the numerical modeling. The information

on displacements of blocks and their interaction along boundaries is obtained. A detailed

description of block models is given, e.g., in [7, 8].

The two-dimensional plane block model has been the most extensively studied. Models

approximating dynamics of lithosphere blocks for real seismic regions have been built on its

basis [7, 9, 10]. It has been used to study the dependence of properties of seismic flow on the

geometry of faults and specific motions of the boundaries and underlying medium [7, 11, 12].
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In the three-dimensional plane model [13], a vertical component of displacements has been

taken into account introducing three additional degrees of freedom. The spherical geometry

[2, 3] has been involved after significant distortions were revealed, while trying to simulate

the motion of a system of global tectonic plates with plane block models. It is evident that

the spherical modification is applicable to studying namely the motion of a global system,

since in the case of a specific seismic region, due to the relative smallness of its dimensions,

the influence of sphericity of the surface is negligible.

In this paper, the emphasis is on the review of developed variants of the spherical model

and on the discussion of their pros and cons. In the first variant, the so called “modification

without depth” [2, 3, 5], it is assumed that all characteristics of a structure’s point are

determined only by its coordinates and do not depend on the depth of the spherical layer.

The modification used in [1, 4] exploits the homogeneity of the lithosphere with respect to

its depth and the identity of the depths of all blocks as well as of properties of all parts of

a block (a fault). In the present paper, in addition to the brief description of the model

with specifying peculiarities of different modifications, a new modification is introduced. Its

main novelty is in an attempt of taking into account the inhomogeneity of the lithosphere

by means of a) specification of different depths for different blocks and b) realization of an

opportunity of changing fault properties depending on the fault depth.

2 Description of the model

Let us describe the basic constructions and ideas of the spherical block model of lithosphere

dynamics and seismicity.

2.1 Block structure geometry, block motion

A spherical layer of a depth H bounded by two concentric spheres is considered. The outer

sphere represents the Earth’s surface and the inner one represents the boundary between the

lithosphere and the mantle. A block structure is a limited and simply connected part of this

layer (see Fig. 1).

Partition of the structure into blocks is defined by faults intersecting the layer. Each

fault is a part of a cone surface characterized by the following two properties. Firstly, the

intersection of the fault with the outer sphere (a fault line) is an arc of a great circle; the
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Figure 1: A model block structure on the sphere.

direction is specified for the fault line. Secondly, the vertex of the cone lies on a straight

line, which is perpendicular to the great circle plane and passes through the center of the

sphere. For such a definition of a fault, its dip angle with the outer sphere has the same

value at all points of the fault line. We denote the dip angle (measured to the left of the fault

line) as α. Thus, the geometry of a block structure is described by a system of fault lines

on the outer sphere enclosing the layer, and by dip angles. Faults intersect along curves,

which meet the outer and inner spheres at points called vertices. A part of such a curve

between two respective vertices is called a rib. Fragments of faults limited by two adjacent

ribs are called segments. The common parts of blocks with the limiting spheres are spherical

polygons, those on the inner sphere are called bottoms. A block structure may be a part

of the spherical shell and be bordered by boundary blocks, which are adjacent to boundary

segments. Another possibility is to consider the structure including the whole spherical shell

(covering the whole surface of the Earth) without boundary blocks. It should be noted that

the possibility of considering a closed structure is a peculiarity of the spherical model (in

comparison with plane modifications).

The blocks are assumed to be perfectly rigid. All block displacements are considered

as negligible, compared with block sizes. Therefore, the geometry of the block structure

does not change during the simulation, and the structure does not move as a whole. The

gravitation forces remain essentially unchanged by the block displacements and, because the

block structure is in a quasi-static equilibrium state at the initial time moment, gravity does

not cause a motion of the blocks.

All vertices on the outer sphere are defined by geographic coordinates (the latitude ϕ
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and the longitude ψ) in a spherical coordinate system with origin at the Earth’s center (both

this system and corresponding Cartesian system are called “System-O”, Fig. 2).

Figure 2: System-O.

In the spherical model, all blocks (both internal and boundary (if specified)) have six

degrees of freedom and can leave the spherical surface. The displacement of each block

consists of translation and rotation components. The translation component is determined

by a translation vector (x, y, z). The rotation component is described by means of three

angles γ, β, λ with respect to an immovable Cartesian coordinate system, (X, Y , Z), with

the origin at the mass center of the block, point C with coordinates (ϕC , ψC , RC). The X

axis is directed along the parallel (latitude), the Y axis along the meridian (longitude), the

Z axis is in the direction of the Earth’s radius vector outwards. Denote this “System-C”

(see Fig. 3).

Assume that the coordinate system with axes X1, Y1, Z1 is connected to the mass center

of the block (it coincides, in the absence of block displacements, with the immovable system

of axes X, Y , Z, in which we consider all block motions). Rotation of the block and its

corresponding system (X1, Y1, Z1) with respect to the system (X, Y , Z) is given in Fig. 4.

The first angle, γ, is defined as the angle of rotation of axes Y and Z around axis X such

that if axis Z2 is the intersection of planes XOZ1 and Y OZ, then axis Z is mapped into

axis Z2 and Y into Y2. The second angle, β, is defined as the angle of rotation of axes X

and Z2 around axis Y2 providing transformation of axis Z2 into axis Z1 (Z1 is in the plane

of XOZ2) and X into X2. And the third angle, λ, is defined as the angle of rotation of axes

X2 and Y2 around axis Z1 such that X2 and Y2 transform into X1 and Y1, respectively.
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Figure 3: System-C.

Figure 4: Definition of rotation angles γ, β, and λ.

According to the definition of the rotation angles, the displacement (∆x, ∆y, ∆z) at a

block point with spherical coordinates (ϕ, ψ, r) has the following form in System-C:

∆x = x − Ŷ λ + Ẑβ, ∆y = y + X̂λ − Ẑγ, ∆z = z − X̂β + Ŷ γ, (1)

where (x, y, z) is a block shift, (X̂, Ŷ , Ẑ) are coordinates in System-C of the vector which

is directed from the mass center of the block to the point (ϕ, ψ, r), the angles (γ, β, λ) are

assumed to be small.
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2.2 Visco-elastic interaction between blocks, equilibrium equa-

tions

The translation vector and the angles of rotation are found from the condition that the sum

of all forces acting on the block, and the total moment of these forces, are equal to zero (the

structure is assumed to be in a quasi-static equilibrium state). The forces arise on the inner

sphere due to relative displacements of the blocks with respect to the underlying medium

and on the fault surfaces due to displacements of neighboring blocks. The motions of the

boundary blocks (if they are specified) and of the underlying medium, considered as an

external action on the structure, are assumed to be known. As a rule, they are described as

rotations on the sphere, i.e., axes of rotation and angular velocities (Euler vectors) are given.

Another possibility consists in specifying a field of velocities (by some law or point-wise) for

points belonging to the boundary blocks and/or the underlying medium.

Depending on the way of treating the depth of the spherical layer, several modifications

of the model are worked out. Since this depth is significantly less than the linear dimensions

of a block structure, it seems reasonable to consider only points belonging to a fault line on

the Earth’s surface while computing the properties of block interaction. Thus, it is assumed

that all characteristics are described only by coordinates (ϕ, ψ) and do not depend on r.

This version of the model is called the “modification without depth”. Its main advantage

consists in considerable saving of running time during simulations; it may be essential in the

case of a large number of runs for carrying out an experiment with varying some parameters.

The cons are obvious: a) actually, dip angles are not properly taken into account; b) studying

the mechanism of spreading an earthquake along a fault is impossible; c) a range of changing

the model magnitude is significantly narrowed. That is why the second modification (the

“modification with depth”, more complicated but more adequate) is designed. At that, two

versions are developed, namely, a) with the same depth of the spherical layer for a whole

structure (the “modification with depth I”) and b) with a possibility of specifying different

depths for different blocks and of changing fault parameters depending on its depth (the

“modification with depth II”). Below, presenting some constructions, which are general for

all modifications, we dwell on the specificity of each modification.

Consider a point on the outer sphere with coordinates (ϕ, ψ) belonging to some fault

separating blocks with numbers i and j, with block i on the left, and block j on the right

(the depths of these blocks may be different). Denote by �et the unit vector tangent to
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the fault line at this point and directed along the fault. Let it have coordinates �et =

(e1, e2, 0) in the rectangular coordinate system with origin at the point (ϕ, ψ) and axes

introduced analogously to those of system-C (call it “system-P”). Define the vector �el =

(−e2 cos α, e1 cos α,− sin α), which lies on the plane tangent to the fault’s surface at the given

point and is perpendicular to the vector �et (α is a dip angle of the fault and, consequently,

of the tangent plane). Introduce also the vector �en = (−e2 sin α, e1 sin α, cos α) that is

perpendicular to this plane. Let the righthanded triple (�et, �el, �en) define the rectangular

coordinate system with the origin at the point (ϕ, ψ), “system-T”, see Fig. 5.

Figure 5: System-T.

Note that, in the modification with depth, it is assumed that system-P and system-T

described above are used for all points of the fault “corresponding” to the point on the outer

sphere with the coordinates (ϕ, ψ). It turns out that, by means of two introduced coordinate

systems, one can rather easily write out relations for finding displacements and elastic forces.

Now consider an arbitrary point (ϕ, ψ, r) of the fault mentioned above, see Fig. 6. Let

(∆rel
x , ∆rel

y , ∆rel
z ) be the vector of relative displacement of the blocks (or the block and the

underlying medium of the neighboring block) at the point (ϕ, ψ, r) in system-P. Components

of displacement on the plane tangent to fault’s surface at this point and in the direction that

is perpendicular to this plane (i.e., in system-T) are correlated with ∆rel
x , ∆rel

y , ∆rel
z as follows:

∆t = ∆rel
x e1 + ∆rel

y e2, ∆l = −∆rel
x e2 cos α + ∆rel

y e1 cos α − ∆rel
z sin α,

∆n = −∆rel
x e2 sin α + ∆rel

y e1 sin α + ∆rel
z cos α.
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Figure 6: Peculiarity of a fault separating blocks of different depths.

The elastic force per unit area (ft, fl, fn) applied to the point (ϕ, ψ, r) of the fault is

defined by

ft = Kt(∆t − δt), fl = Kl(∆l − δl), fn = Kn(∆n − δn). (2)

Here δt, δl, δn are corresponding inelastic displacements, the evolution of which is described

by the equations
dδt

dt
= Wtft,

dδl

dt
= Wlfl,

dδn

dt
= Wnfn. (3)

The coefficients Kt, Kl, Kn, Wt, Wl, and Wn in (2) and (3) may be different for different

faults and, in addition, may depend on the depth (in the modification with depth II). The

values Kt, Kl, and Kn are considered as the shear modulus in the corresponding directions,

whereas the values Wt, Wl, and Wn are inverse to the viscosities [14].

Now, calculate the components of relative displacement, ∆rel
x , ∆rel

y , and ∆rel
z , with the

use of formulae (1). We obtain

∆rel
x = ∆i

x − ∆j
x, ∆rel

y = ∆i
y − ∆j

y, ∆rel
z = ∆i

z − ∆j
z, (4)

where (∆i
x, ∆i

y, ∆i
z) and (∆j

x, ∆j
y, ∆j

z) are vectors of displacement (in system-P) of the point

(ϕ, ψ, r) respectively as a point of the blocks i and j (in the case when the point belongs to

part I of the fault, see Fig. 6) or as a point of the underlying medium of the block i and the

block j (in the case when the point belongs to part II of the fault, see Fig. 6).

In order to obtain the components of these vectors, one should multiply the displacements

of the blocks i and j (or of the corresponding underlying medium) in system-C (defined by

10



(1)) by the transformation matrix from system-C (corresponding to the block) to system-P

(these formulae are omitted here due to their length). Let us note only that in this way one

can determine the displacements both for points on any fault and on the block bottom.

In system-P (associated with a point (ϕ, ψ) of the block bottom) the elastic force per

unit area, (fu
x , fu

y , fu
z ), is of the form:

fu
x = Ku(∆

u
x − δu

x), fu
y = Ku(∆

u
y − δu

y ), fu
z = Kn

u∆u
z , (5)

where δu
x , δu

y are the corresponding inelastic displacements, the evolution of which is given

by the equations:
dδu

x

dt
= Wuf

u
x ,

dδu
y

dt
= Wuf

u
y . (6)

It is assumed that there is no inelastic displacement in the vertical direction (along axis z

of system-P). The coefficients Ku, Kn
u , and Wu in (5) and (6) may be different for different

blocks. The vector (∆u
x, ∆

u
y , ∆

u
z ) of relative displacement of the block and the underlying

medium at the point (ϕ, ψ) considered in system-P is defined by (1) and (4) analogous to

the case of finding the displacement at a fault point.

As mentioned above, components of the translation vectors of the blocks, and angles

of their rotation around the mass centers of the blocks, are found from the condition that

the total force and the total moment of forces acting on each block (written in system-C

corresponding to the block) are equal to zero. This is the condition of quasi-static equilibrium

of the system, and at the same time the condition of energy minimum.

It is important that the dependence of forces and moments on displacements and rotations

of blocks is linear. Therefore, the system of equations for determining these values must be

linear:

Aw = b. (7)

Here, the components of the unknown vector w = (w1, w2, ..., w6n) are components of

translation vectors of blocks and angles of their rotation (n is the number of blocks),

i.e., w6m−5 = xm, w6m−4 = ym, w6m−3 = zm, w6m−2 = γm, w6m−1 = βm, w6m = λm

(m = 1, 2, ..., n). The elements of matrix A (6n × 6n) and of vector b (6n) are determined

from rather complicated formulae, which are deduced from (1)–(6) with the transformation

of forces and moments to system-C. For brevity sake, these formulae are omitted here. It

should be noted that the matrix A in (7) does not depend on time and its elements are

calculated only once, at the beginning of the process. The components of vector b depend
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on time, explicitly, because of motions of the underlying medium and boundary blocks and,

implicitly, because of inelastic displacements.

2.3 Discretization

The model uses dimensionless time. When interpreting the results, some realistic value

should be given to one unit of dimensionless time. For computational purposes, the time

discretization is performed by introducing a time step ∆t. The state of the block structure

under consideration is determined at discrete times ti = t0+i∆t (i = 1, 2, . . .), where t0 is the

initial time. The transformation from the state at ti to the state at ti+1 is made as follows:

a) new values of inelastic displacements δt, δl, δn, δu
x , δu

y are calculated from equations (3)

and (6); b) translation vectors and rotation angles at ti+1 are calculated for the boundary

blocks (if they are specified) and the underlying medium; c) components of b in system (7)

are found, and this system is used to determine the translation vectors and rotation angles

for the blocks.

To calculate various curvilinear integrals, one should discretize (divide into cells) the

spherical surfaces of the block bottoms and fault segments. The values of forces and inelastic

displacements are assumed to be equal for all points of a cell. The block bottoms are divided

into cells in a natural way with the use of a longitude-latitude grid, see Fig. 7; steps with

respect to longitude and latitude are specified.

Note that, according to the assumption, in the modification without depth segments

are not subject to discretization by depth (while calculating, we use characteristics of cells

belonging to fault lines on the Earth’s surface). In the modification with depth, a cone

surface of a fault inclined under some angle α is approximated by a family of planes with

the same inclination angle (Fig. 8). Steps of discretization along and deep down segments

are specified.
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Figure 7: Discretization of a block bottom.

Figure 8: Discretization of a fault segment with vertices v1 and v2.

Note that a good approximation of a cone surface by a family of planes in the case of a

small enough partition along the fault line substantiates the usage of system-P and system-T

described above for all points belonging to the layer (in depth) corresponding to the point

of the outer sphere with coordinates (ϕ, ψ).

2.4 Earthquake and creep

For every time moment, we calculate the value of a quantity κ by the following formula

κ =

√
f 2

t + f 2
l

P − fn

, (8)

where P is the parameter, which may be interpreted as the difference between the lithostatic

and the hydrostatic pressure (P has the same value for all faults).

For every fault, three levels of κ are specified. They satisfy the inequalities B > Hf ≥ Hs.

It is assumed that the initial conditions for numerical simulation of block structure dynamics
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satisfy the inequality κ < B for all cells of the fault segments. If, at some time ti, the value of

κ in some cell of a fault segment reaches level B, a failure (“earthquake”) occurs. By a failure

we mean a slippage by which the inelastic displacements δt, δl, δn in the cell change abruptly

to reduce the value of κ to the level Hf . The new values of the inelastic displacements are

calculated from

δe
t = δt + γeξtft, δe

l = δl + γefl, δe
n = δn + γeξnfn, (9)

where δt, δl, δn, ft, fl, fn are the inelastic displacements and the components of the elastic

force vector per unit area just before the failure. The coefficients ξt = Kl/Kt (ξt = 0 if

Kt = 0) and ξn = Kl/Kn (ξn = 0 if Kn = 0) account for inhomogeneities of displacements

along the plane tangent to the fault (in various directions), and normal to that plane (they

account for the possibility that the same value of the elastic force per unit area can result

in different changes of different inelastic displacements). The coefficient γe is given by

γe =

√
f 2

t + f 2
l − Hf (P − fn)

Kl

√
f2

t + f2
l + KnHfξnfn

. (10)

It follows from (2) and (8) through (10) that after the calculation of new values of the inelastic

displacements and elastic forces, the value of κ in the cell is equal to Hf . It should be noted

that after the calculation according to (2) and (9), the signs of the elastic forces must be the

same as just prior to the failure. For this reason, some cases, namely, a) (1 − Knξnγe) < 0

(and fn changes the sign) and b) (1 − Klγe) < 0 (and fl, ft change the signs; it is proved

that this situation is possible only for fn < 0) require additional processing. In both cases,

we assume

δe
n = ∆n, γe =

√
f2

t + f2
l − HfP

Kl

√
f 2

t + f 2
l

.

Only then the new components of vector b are computed, and the translation vectors and

angles of rotation for the blocks are found from (7). If for some cell(s) of the fault segments

κ ≥ B, the entire procedure is repeated. This is done until all cells satisfy the condition

κ < B, at which point the state of the block structure at time ti+1 is determined as described

in Section 2.3. Immediately after the earthquake, it is assumed that the cells, in which the

failure occurred, are in the creep state. This implies that, for these cells, parameters W s
t

(W s
t > Wt), W s

l (W s
l > Wl), and W s

n (W s
n > Wn) are used instead of Wt, Wl, and Wn in

equations (3). Such new values provide the faster growth (comparing with the normal state)

of the inelastic displacements. They may be different for different faults. The cells are in
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the creep state so long as κ > Hs; when κ ≤ Hs, the cells return to the normal state, after

which Wt, Wl, and Wn are used in (3).

All cells of the same fault, in which the failure occurred at the same time, are considered

as a single earthquake. The parameters of the earthquake are defined as follows: a) the time

of the event is ti; b) the epicentral coordinates are the weighted sums of the corresponding

coordinates of the cells involved in the earthquake (the weight of each cell is given by its

length (in the modification without depth) or area (in the modification with depth) divided

by the sum of lengths/areas of all cells involved in the earthquake); c) the magnitude is

calculated in the modification without depth by the formula suggested in [15]:

M = 1.16 lg L + 5.08, (11)

where L is the total surface rupture length of cells (in km) involved in the earthquake; and

in the modification with depth by the formula proposed in [16]:

M = 0.98 lg S + 3.93, (12)

where S is the total area of cells (in km2) involved in the earthquake. In the modification

without depth, it is possible to attribute the same depth to all earthquakes.

An argument to use formulae (11) and (12) as a definition of the model magnitude is the

fact that the energy released through an earthquake depends mainly on the total size (area)

of fault’s part covered by this earthquake.

Thus, a synthetic earthquake catalog is produced as a main simulation result.

3 Results of numerical simulation

To compare different modifications of the spherical block model, we consider results of nu-

merical modeling of dynamics and seismicity of the global system of tectonic plates. This

block structure is a closed one including the whole spherical shell (covering the whole surface

of the Earth). It does not have lateral boundaries and therefore boundary blocks are not

specified for it. Previous analysis [3, 5] proved that dynamics and seismicity of the global

system of tectonic plates is more accurately modeled by means of the closed block struc-

ture than with the structure for that boundary blocks (e.g., the largest plates) are specified.

Therefore, in this study we restrict ourselves by considering the closed system of plates only.

15



Since in [5] one can find the detailed description of numerical experiments with the modifi-

cation without depth, here we give only the outline of simulation results obtained by means

of that modification.

3.1 Modification without depth

The block structure approximating the global system of tectonic plates includes 15 blocks,

186 vertices, and 199 faults (segments) [5], see Fig. 9. We use dip angles of faults to consider

flat gradient of subduction zones in comparison with other plate boundaries. Thus we specify

a dip angle of 50◦ for faults corresponding to clearly observed subduction zones (e.g., at

the boundaries South America/Nazca, India/Eurasia, Cocos/Caribbean, around Philippines;

totally 26 faults) and of 90◦ for other faults. It is obvious that in the modification without

depth a dip angle is rather artificial characteristic of a fault.

The motion of the closed structure is caused only by the motion of the underlying medium.

The parameters of the latter are taken from the model HS2-NUVEL-1 [17] with the Somalia

plate added [18]. The values of the coefficients in formulae (2), (3), (5), and (6) are specified

using the experience of the previous studies with the plane block models (see, e.g., [7, 10]) and

taking into account the peculiarities of the spherical block model. The coefficients Kt, Kl,

Kn, Ku, Kn
u are measured in bar/cm, the coefficients Wt, Wl, Wn, Wu — in cm/bar. In all the

experiments described below, if not mention otherwise, there are taken the following values

of parameters determining the interaction between a block and its underlying medium (see

(5),(6)): Ku = 10,Wu = 0.1, Kn
u = 20 and the following values for the levels of κ (see (8)):

B = 0.02, Hf = 0.017, Hs = 0.014. Increasing slightly (comparing with the plane models)

the values of the first group provides the better binding of blocks to their underlying medium

(this corresponds to the common views on the plate tectonics), whereas decreasing the values

of the second group is explained by the desire of getting larger number of model events on

a bounded time interval.

Several series of numerical experiments studying the dependence of dynamics and seis-

micity of the structure on model parameters, in particular, on characteristics of visco-elastic

properties of block bottoms and faults, were carried out. The changes of these parameters are

based on observed seismicity: the coefficients Kt, Kl, Kn are decreased, and the coefficients

Wt, Wl, Wn are increased for faults with vastly low level of observed seismicity (as a rule, for

faults that separate large-scale structures); and vice versa for active faults. These changes
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reflect the following considerations [7]. First, if the same value of relative displacement of

two blocks separating by a fault zone is considered then it induces a lesser force at a large-

scale fault zone than at a small-scale one. This means that smaller values of coefficients Kt,

Kl, Kn should correspond to large-scale fault zones. Second, the rate of growth of inelastic

displacement for the same value of the force should be greater for large-scale fault zones,

which are more fragmented and, consequently, less elastic and more viscous zones, than fault

zones, separating small-scale structures. This means that larger values of coefficients Wt,

Wl, Wn should correspond to large-scale fault zones. The experiments allowed us to specify

a set of parameters which provided the better correspondence between model and real data.

This set is presented in Tab. 1 (the notation for the plates is introduced in Fig. 9).

T a b l e 1

Parameters of basic variant

Parameters of Parameters of faults

discretization

Time step For faults that form boundaries

— 0.01. NA/SA, west of I/Au, E/NA:

Space step: Kt = Kl = Kn = 0.1,

for segments Wt = Wl = Wn = 1;

— 1 km, east of SA/An, south of SA/Af:

for block bottoms Kt = Kl = Kn = 0.25,

— 0.5◦. Wt = Wl = Wn = 0.4;

west of SA/An, Co/N, P/N, An/N, Co/P, Af/NA, south of Au, west of F, south of P:

Kt = Kl = Kn = 0.5,

Wt = Wl = Wn = 0.2;

SA/N, middle of SA/An, north of SA/Af, E/Ar, east of I/Au, I/E, north of Au, P/NA:

Kt = Kl = Kn = 2,

Wt = Wl = Wn = 0.05;

around Ca, NA/Co, E/Af, east and north-east of Au, E/Au, around Ph:

Kt = Kl = Kn = 5,

Wt = Wl = Wn = 0.02.

For other faults:

Kt = Kl = Kn = 1,

Wt = Wl = Wn = 0.1.
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The results of numerical experiments include the spatial distribution of the strongest

model events, the information on displacements of the plates and on the character of their

interaction along boundaries. Below we present some simulation results for the variant from

Tab. 1.

Figure 9: The global system of tectonic plates and results of simulation of the character

of plate boundaries: divergent plate boundaries (spreading, light shading), convergent plate

boundaries (subduction, dark shading), transform plate boundaries (sliding, toothed shad-

ing). The notation for the plates: NA — North America, SA — South America, N — Nazca,

Af — Africa, Ca — Caribbean, Co — Cocos, P — Pacific, S — Somalia, Ar — Arabia, E

— Eurasia, I — India, An — Antarctica, Au — Australia, Ph — Philippines, F — Juan de

Fuca.

The behavior of boundary points belonging to plate boundaries, for which one of three

types (divergent, convergent, and transform) is clearly marked, was investigated. Such

characteristic boundaries [19] (e.g., as South America/Nazca, Pacific/Nazca, South Amer-

ica/Africa, India/Eurasia, surrounding Philippines, etc.) were considered. By means of

two displacements of a boundary point in the coordinate system connected with this point

(system-P) as a point of right and left blocks, respectively, its relative displacement was com-

puted. Relative displacements of boundary points characterize qualitatively the interaction
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between plates along their boundaries, namely, allow us to mark the divergent (spreading),

convergent (subduction), and transform (sliding) plate boundaries; this information is partly

presented in Fig. 9. The model boundary types are rather similar to real ones.

In addition, the spatial distribution of the strongest model events was obtained. The

comparative analysis of the synthetic catalog that was composed by means of formula (11)

and observed seismicity was performed. We consider events with the magnitude M ≥ 5.0

for the time period 01.01.1900–31.12.2006 without any restrictions by depth and area of

location selected from the global catalog NEIC [20] (below NEIC-5). Studying the spatial

distribution of epicenters of the model events shows most active synthetic seismicity at such

boundaries as Nazca/South America, Cocos/Caribbean, India/Eurasia, California region,

Arabia/Eurasia, south-east, east, north-east and, especially, north of Australia, and the

Philippine plate margin. The level of synthetic seismicity is extremely small at such bound-

aries as south of Pacific plate, Nazca/Pacific, east and south-west of Africa, India/Australia,

North America/Eurasia. These locations agree in principle with observations; this fact indi-

cates a degree of adequacy of the model. The similarity in the locations of epicenters of the

strongest events in observed seismicity (Fig. 10) and model one (Fig. 11) is evident, despite

of some differences (e.g., north of Africa, boundary South America/Africa). Note that the

magnitudes in the spherical block model are, as a rule, larger than the real ones. At the same

time, the analysis of parameters of the Gutenberg — Richter law, of vertical components of

block motions in subduction zones, of some quantitative characteristics of motions brings to

light not quite satisfactory results. In particular, the slope of the FM plot characterizing the

relation between the numbers of strong and weak events is far from the real value, whereas

the plot is far from linear (it is known that the FM plot for global seismicity observed dur-

ing the period of last 100 years is nearly linear and its slope is approximately equal to 1).

Thus, we made the conclusion that the model needs to be improved. As main directions

of its development, we chose taking into account the depth of the spherical layer and the

lithosphere inhomogeneity. The variant from Tab. 1 is considered as a basic one for testing

the modification with depth.
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Figure 10: Epicenters of strongest earthquakes with M ≥ 7.5, catalog NEIC-5.

Figure 11: Epicenters of strongest earthquakes with M ≥ 8.0, modification without depth,

variant from Tab. 1.
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3.2 Modification with depth I: the same depth for all blocks

The simulation of dynamics of the block structure described in the previous section is per-

formed on the base of the variant from Tab. 1. In this section, we assume that the depth

of the spherical layer (the lithosphere in the model) is of the same value for all the blocks,

namely 40 km. The parameters of faults listed in Tab. 1 remain unchanged during experi-

ments.

Let us describe some simulation results. Three series of experiments were carried out.

The first series (Tab. 2, variants 1.1–1.4) investigates the dependence of the Gutenberg —

Richter law parameters for global seismicity, of the seismic flow intensity, and of the range

of changing the model magnitude on the value of the step of discretizating segments by

depth (all other parameters including dip angles (their influence on simulation results should

essentially increase for the modification with depth) are the same). The second series (Tab. 2,

variants 2.1–2.3) is designed to study the impact of faults’ dip angles. Third one (Tab. 2,

variants 3.1–3.4) repeats the first series but the best variant of the second series is chosen as

a basic one. Again, as in the previous section, we orientate ourselves to the parameters of

the Gutenberg — Richter law for observed seismicity. The characteristics of the interaction

between plates along their boundaries and the spatial distribution of the strongest model

events are similar in different variants and do not have principal distinctions from the results

obtained by means of the modification without depth. The parameters being of interest are

presented in Tab. 2. Note that the magnitude of model events in the modification with depth

is calculated by formula (12).

Analyzing the data from Tab. 2, we can point out the following facts. The simulation

results obtained in variants 1.1–1.4 do not allow us to assert that there exists a definite

dependence of the slope of the FM plot on the value of the step of discretizating segments

by depth in the case when the majority of faults have got dip angles of 90◦. Although the

slope is slightly increased when the step is decreased (this is rather “good” tendency), the

approximation error is also increased. Some extension of the range of changing the model

magnitude takes place due to decreasing the minimal area of segment cells. In variants 1.1–

1.4, the slopes of the model FM plots are less than 1. It is likely that the matter is in the

fact that failures occur simultaneously in cells belonging to faults with dip angles of 90◦.

Therefore, strong events prevail over others, the FM plot is more gently sloping, and the

influence of the step of discretization by depth is vague.
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T a b l e 2

Modification with depth I: simulation results

Variant Step of Number of Range of Slope Approximation

discreti- model changing estimate error

zation events magnitude

1.1 40 km 237 389 [5.4,8.8] 0.804 0.232

1.2 20 km 282 305 [5.2,8.7] 0.848 0.274

1.3 8 km 328 400 [4.5,8.8] 0.876 0.236

1.4 4 km 344 984 [4.3,8.8] 0.886 0.296

2.1 = 1.3 8 km 328 400 [4.5,8.8] 0.876 0.236

2.2 8 km 340 401 [4.5,8.7] 0.883 0.230

2.3 8 km 419 120 [3.9,8.5] 0.841 0.154

3.1 40 km 324 385 [5.3,8.7] 0.828 0.177

3.2 20 km 376 240 [4.7,8.6] 0.844 0.186

3.3 = 2.3 8 km 419 120 [3.9,8.5] 0.841 0.154

3.4 4 km 436 619 [3.6,8.5] 0.845 0.162

Remarks.

1. All plots are approximated by the linear least-squares regression, lg N = a − bM . A

slope estimate for the plot is a “b-value” of corresponding regression. The average distance

between points of the plot and the line constructed is treated as an approximation error.

2. In variants 2.2 and 2.3, dip angles being equal to 90◦ in the basic variant (Tab. 1) are

substituted for 75◦ and 105◦ (depending on fault’s direction) in such a way: for 26 faults

adjacent to subduction zones in variant 2.2, and for almost all faults in variant 2.3 (angles

being equal to 50◦ are not changed).

3. The interval of simulation is equal to 100 units of dimensionless time for all variants.

4. The magnitude interval for the plot is equal to [5.5, 7.5] for all variants.

In variants 2.1–2.3, we observe the essential extension of the range of changing the model

magnitude due to the occurrence of weak events and some “improvement” of the approx-

imation error of the slope of the model FM plot. This happens chiefly because of cells of

a fault with dip angle different from 90◦ come to “critical” state at different time instants;

and, as a consequence, we have got a greater number of weak events.

According to the aggregated estimate, variant 2.3 should be recognized as a better one

in the second series. Namely for this variant the value of the step of discretizating segments
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by depth is varied in the third series (variants 3.1–3.4). It is easily seen that in this series,

when decreasing the step, the essential (comparing with the first series) extension of the

range of changing the model magnitude and some “improvement” of linearity of the model

FM plot are observed (at that the slope is closest to 1 in variant 3.4). This fact points out

an essential distinction in the properties of model seismicity in the cases when dip angles are

equal to 90◦ and are not.

The analysis of the results obtained in three series leads to the conclusion that the shape

of the model FM plot is to a greater degree determined by dip angles of faults in comparison

with the value of the step of discretizating segments by depth. Indeed, decreasing of this

value influences the intensity of the flow of model earthquakes but does not result in changes

of the number of events in a magnitude interval common for all model catalogs. The total

number of earthquakes increases due to the occurrence of weak events of lesser magnitudes

defined by the minimal area of segment cells (see (12)); at that the slope is slightly varied.

Fig. 12 confirms these conclusions.

Figure 12: The model FM plots constructed for variants 1.1–1.4 (Tab. 2, (1)–(4), respec-

tively) and for the variant obtained by the modification without depth (5); N is accumulated

number of earthquakes, M is magnitude.

To compare with the data from Tab. 2, we use the results obtained by means of the

modification without depth. For the variant from Tab. 1, the number of model events is

equal to 79 694, the slope of the model plot on the magnitude interval [5.5,7.5] is equal to

0.372, the approximation error is 0.067.

One can see from Fig. 12 that plot (5) constructed for the variant obtained by the

modification without depth is essentially less linear (as a whole) in comparison with others.
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In this plot, one can identify two almost linear parts with different slopes; the intermediate

zone between these parts is observed nearby magnitude point M = 7.0. Such bend of the

shape of the FM plot may be explained as follows: it reflects transition from earthquakes

involving whole “short” segments to earthquakes involving whole “long” segments. When

taking into account the depth of the layer, such clear bend is not observed since cells obtained

as a result of the spatial discretization by depth afford more uniform filling of the magnitude

range for model events. In addition, according to plot (5), there are rather many events with

abnormally large magnitudes in this variant. Such distinctions allow us to conclude that,

at least, according to some characteristics, the modification with depth is more adequate in

the description of global seismicity than the modification without depth.

To compare the model and real data, the FM plots for synthetic seismicity in variant 3.4

and that for observed seismicity constructed from catalog NEIC-5 are given in Fig. 13.

Figure 13: The FM plots constructed for the real (NEIC-5, (1)) and synthetic (variant 3.4,

(2)) catalogs; N is accumulated number of earthquakes, M is magnitude.

For the model plot in Fig. 13, there exists the magnitude interval (the domain of average

values), where the plot is “linear enough”. But this plot essentially differs from the real one,

especially outside the domain in question. To reduce differences, it is necessary to increase

the number of weak events in the model and to improve “linearity” of model plots. Toward

this end, additional series of numerical experiments in which different values of depth are

assigned to different blocks and properties of faults are changed depending on depth (thus

taking into account the lithosphere inhomogeneity) were carried out.

As to the spatial distribution of the strongest model events, it is slightly different in vari-

ant 3.4 (Fig. 14) from the distribution in the variant obtained by the modification without
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depth (Fig. 11). As pros of variant 3.4, we consider the occurrence of strong events on the

known by its seismic activity boundary South America/Nazca.

Figure 14: Epicenters of strongest earthquakes with M ≥ 7.0, modification with depth I,

variant 3.4 from Tab. 2.

Note that in some regions, where rather high seismicity is observed, we did obtain strong

earthquakes in all variants (e.g., in the west part of boundary Africa/Eurasia, see Fig. 10).

Our conjecture is that the motion of global tectonic plates is not a main driving force of

seismic activity in these regions.

3.3 Modification with depth II: different depths of blocks

During numerical experiments with the modification with depth II described in this section,

the model plate depths for the structure under consideration (see Fig. 9) were specified

taking into account a) the distribution in depth of real earthquakes from catalog NEIC [20];

b) the fact that the depth of a block actually determines the range of changing the depth of

model events on this block’s boundaries (recall that, according to the model assumptions,

events cannot occur inside a block). By this reasoning, the following depths were assigned

to the blocks: Nazca — 50 km, South America — 10 km, Cocos — 50 km, Caribbean —

10 km, North America — 10 km, Pacific — 100 km, Africa — 10 km, Antarctica — 10 km,
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Eurasia — 30 km, Arabia — 50 km, India — 50 km, Somalia — 10 km, Philippines — 50

km, Australia — 50 km, Juan de Fuca — 50 km. Note that, under such a specification,

the depths of some blocks (e.g., of Pacific plate) essentially differs from commonly accepted

estimates of real values [21]. The next step in the development of this modification is assumed

to be a partition of the model plates into blocks with mainly continental (deep) crust and

mainly oceanic (thin) crust. Such a restructuring will allow us to specify block depths in

accordance with their real values; it is impossible in the present situation due to essential

inhomogeneities of the blocks in the sense that the same block may contain considerable

parts with the crust of different types (e.g., South and North American plates).

Two series of experiments were carried out. In the process, the step of discretizating

segments by depth remained the same, namely 2 km. The first series (Tab. 3, variants 4.1–

4.3) investigates the dependence of some properties of synthetic seismicity on the rule for

changing the coefficients from (2) and (3) characterizing visco-elasticity of a fault medium

with depth. Note that dynamics of coefficients is chosen in such a way that it provides the

approximate equality of products KtWt, KlWl, and KnWn on each layer of discretization of

a segment by depth. This restriction is explained by the fact that the values that are inverse

to listed products are important rheological characteristics of a fault [14]. In variant 4.1,

all the coefficients mentioned above do not depend on depth; in variant 4.2, the coefficients

Kt, Kl, and Kn are decreased with depth on the basis of 2% per every layer (e.g., for

faults of Philippines from 5 bar/cm on the surface layer down to 3 bar/cm at a depth of

50 km), whereas the coefficients Wt, Wl, and Wn are increased by analogy (e.g., for faults

of Philippines from 0.02 cm/bar on the surface layer up to 0.033 cm/bar at a depth of

50 km); in variant 4.3, vice versa, the coefficients Kt, Kl, and Kn are increased on the basis

of 2% per every layer (for mentioned faults from 5 bar/cm up to 8.2 bar/cm), whereas the

coefficients Wt, Wl, and Wn are decreased by analogy (for mentioned faults from 0.02 cm/bar

down to 0.012 cm/bar). Note that the rule for changing the coefficients in variant 4.2 seems

more realistic, comparing with variant 4.3, because of the commonly accepted viewpoint

on increasing the viscosity and decreasing the elasticity of the lithosphere when moving in

depth. In the second series, the influence of other model parameters is studied. In variant 5.1,

the parameters specifying the interaction between a block and its underlying medium are

changed (see (5),(6)): Ku = 1,Wu = 0.025, Kn
u = 2 instead of Ku = 10,Wu = 0.1, Kn

u = 20.

In variant 5.2, the coefficients W s
t , W s

l , and W s
n used to calculate inelastic displacements of

cells being in the creep state are multiplied by five (comparing with all other variants).
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For a comparative analysis of simulation results, in addition, we involve variant 3.4 from

Tab. 2 (as the best one in the modification with depth I). Tab. 3 presented below is composed

by analogy with Tab. 2.

T a b l e 3

Modification with depth II: simulation results

Variant Number of Range of Slope Approximation

model changing estimate error

events magnitude

3.4 436 619 [3.6,8.5] 0.845 0.162

4.1 506 175 [3.8,8.6] 1.844 0.650

4.2 598 087 [3.5,8.0] — —

4.3 831 151 [3.2,8.3] — —

5.1 457 558 [3.6,9.0] 1.690 0.349

5.2 404 599 [3.6,8.6] 1.827 0.150

Remarks.

1. The interval of simulation is equal to 100 units of dimensionless time for all variants.

2. The magnitude interval for the plot is equal to [6.5, 8.0] in variants 4.1, 5.1, and 5.2;

[5.5, 7.5] in variant 3.4; intervals of linearity are uncertain in variants 4.2 and 4.3.

To compare the model and real data, the FM plots for synthetic seismicity in variants 5.1

and 5.2 and that for observed seismicity constructed from catalog NEIC-5 are given in Fig. 15.

For the model plots in Fig. 15, the magnitude interval (in the domain of average values),

where the plots are “linear enough”, is extended, in comparison with the modification with

depth I, see Fig. 13. However, as before, the plots essentially differ from the real one. To

reduce differences in slopes, it is necessary to increase the number of model events outside the

domain of average magnitudes. Toward this end, additional series of numerical experiments

are assumed to be performed. Studying the shape and slope of the model plots shows that,

according to some features, the results obtained for different depths of blocks are preferable

than the results obtained for the same depth of blocks, and vice versa, according to other

features.

27



Figure 15: The FM plots constructed for the real (NEIC-5, (1)) and synthetic ((2) —

variant 5.1, (3) — variant 5.2 ) catalogs; N is accumulated number of earthquakes, M is

magnitude.

Additional comparative analysis of two modifications of the spherical block model is

carried out for the purpose of establishing the relation between model (dimensionless) and

real time intervals. Relative velocities of displacements of characteristic points at plate

boundaries obtained in the model are studied and compared with those given by the model

HS2-Nuvel-1 [17]. The results are presented in Tab. 4.

Taking into account the quantitative behavior of displacements of points, we conclude

that with rather high probability, for the dimensions accepted in the model, the unit of

dimensionless model time corresponds to about 1 year for both variants. It is clear that

this conjecture requires careful verification, first, by further comparative analysis of real and

model catalogs, and second, by study of the impact of model parameters on the period be-

tween strong events in different regions. In addition, from Tab. 4 it follows that the velocities

of relative displacements of boundary points in the modification with depth I is more close

to the HS2-Nuvel-1 velocities than in the modification with depth II. The deviations are

particularly large on the boundaries of the plates with greatly different values of depth (Co-

cos/Caribbean, Eurasia/Philippines). Note that in our experiment we consider the points

on the Earth’s surface, not at block bottoms, where one should expect less deviations from

the HS2-Nuvel-1 velocities.
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T a b l e 4

Velocities of relative displacements of boundary points:

(1) — in the model of plate motion HS2-Nuvel-1 (cm/year);

(2) — in the modification with depth I (variant 3.4, Tab. 2, cm/unit of model time);

(3) — in the modification with depth II (variant 5.1, Tab. 3, cm/unit of model time)

Point coordinates Block tanα1 tanα2 tan α3 |�v1| |�v2| |�v3|
latitude longitude I II

-21.71 -71.44 SA N 0.23 0.22 0.24 8.66 8.06 8.15

-9.63 -13.25 SA Af 0.22 0.20 0.21 3.28 3.36 3.45

11.19 -89.11 Ca Co 1.89 1.69 1.54 7.95 7.10 12.16

-18.58 -112.63 P N -0.23 -0.23 -0.22 14.68 15.24 15.03

14.18 52.60 S Ar 3.23 2.94 2.38 1.89 1.70 1.89

28.11 84.84 E I 4.17 4.17 3.57 5.04 4.78 4.74

-49.85 130.44 An Au 8.33 9.09 7.69 7.31 7.13 6.96

-7.00 149.62 P Au 0.32 0.32 0.30 10.65 10.50 10.24

29.15 130.59 E Ph -0.80 -0.76 -0.06 5.12 5.17 3.99

36.89 -119.87 NA P -1.43 -1.41 -1.56 4.68 4.61 4.52

Remark. All the points considered belong to the Earth’s surface. The coordinate system,

in which relative displacements of a boundary point are considered, is connected with this

point (the center is in the point, the axis x is directed along the parallel to the east, the axis

y is directed along the meridian to the north). The fault segment that the point belongs

to separates the blocks I and II, at that the block I is considered as motionless, whereas

the block II moves relative to the block I. The vector of relative velocity �vi (i = 1, 2, 3) is

characterized by its absolute value |�vi| and the tangent of the angle αi between �vi and the

axis x.

The spatial distribution of the strongest model events in variant 5.1 (Fig. 16), being

slightly different from the distributions obtained earlier (Figs. 11 and 14), nevertheless reveals

an additional similarity with observed seismicity (Fig. 10), consisting in the occurrence of

strong events on the north boundary India/Eurasia. It should be noted that the improvement

of the model distribution takes place not due to matching faults parameters (which are the

same for all experiments, see Tab. 1) but as a consequence of the development of the model.
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Figure 16: Epicenters of strongest earthquakes with M ≥ 7.0, modification with depth II,

variant 5.1 from Tab. 3.

As to the spatial distribution of model events, note that, in the best variants for all the

modifications, the most important patterns of global seismicity are reflected, namely: a) two

large seismic belts, the circum-Pacific and Alpine-Himalayan (the first is more well-defined),

where most of the strong earthquakes occur; b) extensive, but less pronounced seismicity

at mid-oceanic ridges; c) increased seismic activity associated with triple junctions of plate

boundaries. At the same time, the absence of earthquakes in oceanic rift zones in the model is

related to parameter fitting. At the current stage of investigations, an intensive quantitative

study of the real and model distributions seems to be possible, but not productive because

firstly, observed seismicity is rather weak on many parts of plate boundaries (due to the

relative smallness of the observation interval), and secondly, the range of model magnitudes

is too narrow and does not correspond to the real one. To find adequate correspondence

between model and real magnitudes is the subject of a separate investigation, because this

correspondence may be different in different seismic regions.

Among experiments that are specific for the new modification of the model, we point

out here the analysis of the distribution of model events with respect to depth. Note that a

“good” similarity of a model distribution with the real one would allow us to pass to studying

the migration of model events and the mechanism of their spreading along a fault. The first

results for characteristic depths of the model structure are given in Tab. 5. It is evident
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that, in order to redistribute events, we need to get more specific information on the rule

of changing model parameters depending on depth. We observe the noticeable similarity

between the real distribution and results obtained in variant 5.1, where changes concern the

values describing the interaction of blocks and underlying medium.

T a b l e 5

Distribution of earthquakes with respect to depth (in percent with respect to the total

number of events with magnitude not less than 5.0): NEIC — global catalog NEIC-5

(73 891 events); 4.1 — variant 4.1 (494 449); 4.2 — variant 4.2 (556 018); 4.3 — variant 4.3

(780 006); 5.1 — variant 5.1 (445 248); 5.2 — variant 5.2 (392 477)

Depth NEIC 4.1 4.2 4.3 5.1 5.2

up to 30 km 35.3 46.4 65.1 31.2 40.9 46.5

[30, 50 km] 32.6 29.4 29.4 20.9 31.6 31.0

over 50 km 32.1 24.2 5.5 47.9 27.5 22.5

4 Parallelization: scheme and efficiency

The computational experiments described in the previous sections show that the spherical

block model of lithosphere dynamics and seismicity during performing on sequential com-

puters requires considerable expenditures of memory and processor time. Due to this reason,

the problem of simulating dynamics for structures with a large number of blocks and a small

enough step of spatial discretization needs special solving tools. Note that a) considering the

spherical geometry of the structure essentially complicates calculations and b) introducing

depth in the model (implying discretization of segments by depth) is a real technical prob-

lem (because faults are cone surfaces). However, the approach applied to modeling admits

effective parallelization of calculations on a multiprocessor machine [5, 22].

The variant of parallel program was realized on multiprocessor systems placed at the Joint

Supercomputer Center (Moscow, Russia; MVS-15000M) and at the Institute of Mathematics

and Mechanics (Ekaterinburg, Russia; UM32, UM64) by the scheme “master-worker” (“pro-

cessor farm”). For compatibility with different platforms (in the sense of fast transition),

the special library MPI (“Message Passing Interface”) was used, and the parallel algorithm

was designed in such a way that a unique loading module was formed for all processors.
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The block-scheme of the main calculative procedure is presented in Fig. 17.

Figure 17: Scheme of main calculative procedure.

Let us give necessary explanations. In the beginning of the work, a specific processor,

which the program has loaded to, is detected by its number (zero number becomes the mas-

ter). Then the information on a block structure is read, and auxiliary calculations (space

discretization, calculation of the matrix A of system (7)) are performed. For all the modifi-

cations of the model, at every time step the most time-consumable procedure is calculation

of values of forces and inelastic displacements in all cells of space discretization of the block

bottoms and fault segments. Since these calculations may be performed independently from

each other, they are uniformly shared between all processors. The exchange of informa-

tion at every time step is realized according to the following scheme (see Fig. 17, where

operations carried out only by the master are marked by “M”, only by the workers — by

“W”). The master calculates new values of block, boundary block and underlying medium

displacements (it requires insignificant time due to the small dimension of system (7)), then
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necessary parameters are transferred to the workers. Recalculated values of the vector b are

returned to the master, then the next time step is carried out. For processing the situation

treated as an earthquake, the scheme is slightly complicated, since in this case the master

should ask all the workers until cells of segments in the critical state exist (for which κ ≥ B).

For such a scheme, the time of calculations on each processor is much more than the time

of exchange. Therefore, rather high useful loading of each processor is achieved. Note that,

after introducing the depth of the spherical layer, the volume of calculations increases (the

number of segment cells increases), whereas exchanges between processors remain in essence

the same. Therefore, the share of calculation time (in the total time) increases with respect

to the share of exchange and idle time; this results in increasing the effectiveness coefficient.

For testing the dependence of time necessary for solving the problem on the number of

processors and comparing with sequential algorithm, we chose variant 4.2, 100 time steps

(or 1 unit of dimensionless time) with a considerable number of earthquakes occurred (note

that a typical variant needs 20 000 steps). The experiment was performed at the Institute of

Mathematics and Mechanics (Ekaterinburg, Russia; UM32 machine, 32 processors Xeon (2.4

GHz) with peak productivity of 160 Gflops). The following values were analyzed: accelera-

tion coefficient Sp = T1/Tp and effectiveness coefficient Ep = Sp/p, where Tp is the time of

program performance on multiprocessor computer with p processors, T1 is the corresponding

time for sequential algorithm. Results of testing are presented in Tab. 6. Note that both

T1 and Tp essentially depend on parameters of the structure under consideration but for all

variants their ratio is approximately the same.

T a b l e 6

Calculation time, acceleration and effectiveness coefficients

for different number of processors

p t calc. t chan. t total Sp Ep

1 6335.84 — 6335.84 — —

2 3256.52 34.60 3291.12 1.92 0.96

4 1626.94 38.52 1665.46 3.80 0.95

8 814.74 33.98 848.72 7.46 0.93

10 654.34 27.93 682.27 9.29 0.93

16 417.36 22.26 439.62 14.41 0.90

20 331.23 22.33 353.56 17.92 0.90

28 237.08 28.53 264.61 23.94 0.86
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Remark. Notation: t calc. — calculation time, t chan. — idle and exchange time, t total —

total expenditure time (all in seconds).

It follows from Tab. 6 that for p ≤ 20 the acceleration coefficient Sp is slightly less than

p, the effectiveness Ep is rather high, not less than 0.9. The comparison with results of

analogous experiment for the modification without depth [5] confirms theoretically sound

argument that increasing the volume of calculations (in this case, due to discretization of

segments by depth) without increasing time of exchange between processors results in an

essential growth of the effectiveness of parallelization.

5 Conclusive remarks

Simplifications accepted in the spherical block model give no opportunity to draw conclusions

on the correspondence between observed and synthetic seismicity at any specific point or in

relatively small regions. However, some similarity of the model results and the real data in

the global scale is certainly a positive fact; it stimulates a further development of the model.

Basing on the results of numerical experiments, we established that, according to some

characteristics, the modification with depth is more adequate in the description of dynamics

and seismicity of the global system of tectonic plates than the modification without depth.

It should be noted that this happens despite the fact that the depth is significantly less than

the linear dimensions of plates and, seemingly, may be neglected when simulating. However,

in the case of the modification without depth, the role of dip angles of faults is leveled,

whereas these angles play a determinative role in properties of synthetic seismicity. The

modification with depth II, taking into account the lithosphere inhomogeneity by means of

specification of different depths for different parts of a structure and variation of parameters

characterizing visco-elastic properties of faults depending on depth, opens additive possibil-

ities in simulation. Let us list the important specific features of different modifications of

the spherical block model. The modification without depth may be used for the qualitative

studying of the interaction between blocks along their boundaries and such properties of a

seismic flow as the spatial distribution of epicenters, the seismic cycle, and the migration of

events along tectonic faults. Its main advantage consists in considerable saving of running

time during simulations; the cons are obvious. The modification with depth I allows us to

start studying the mechanism of spreading earthquakes along a fault, to classify events, to
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essentially extend the range of changing the model magnitude. At last, the modification with

depth II, being an attempt of taking into account the lithosphere inhomogeneity within the

framework of the spherical block model, is destined for providing an opportunity of investi-

gating distributions of model events with respect to depth and studying the dependence of

synthetic seismicity on different rules of changing visco-elastic properties of a fault medium

with depth.
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