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Synchronization

Greek origin:

Σύγ χρόνος – sharing a common
property in time



Nonlinear Sciences

Start in 1665 by Christiaan Huygens:

Discovery of phase synchronization, 
called sympathy



Huygens´-Experiment







Pendulum Clocks

• Christiaan Huygens:
Pendelum clocks hanging at the same
wooden beam (half-timber house)
It is quite worth noting that when we suspended two clocks
so constructed from two hooks imbedded in the same
wooden beam, the motions of each pendulum in opposite
swings were so much in agreement that they never receded
the last bit from each other...Further, if this agreement was 
disturbed by some interference, it reastablished itself in a 
short time...after a careful examination I finally found that
the cause of this is due to the motion of the beam, even
though this is hardly perceptible (Huygens, 1673)



Modern Example: Mechanics

London´s Millenium Bridge

- pedestrian bridge
- 325 m steel bridge over the Themse
- Connects city near St. Paul´s Cathedral with Tate 

Modern Gallery

Big opening event in 2000 -- movie



Bridge Opening

• Unstable modes always there
• Mostly only in vertical direction considered
• Here: extremely strong unstable lateral 

Mode – If there are sufficient many people 
on the bridge we are beyond a threshold and 
synchronization sets in
(Kuramoto-Synchronizations-Transition, 
book of Kuramoto in 1984)



Supplemental tuned mass dampers to reduce the oscillations

GERB Schwingungsisolierungen GmbH, Berlin/Essen



Examples: Sociology, Biology, Acoustics, Mechanics

• Hand clapping (common rhythm)
• Ensemble of doves (wings in synchrony)
• Mexican wave
• Menstruation (e.g. female students living in one

room in a dormitory)
• Organ pipes standing side by side – quenching or

playing in unison (Lord Rayleigh, 19th century)
• Fireflies in south east Asia (Kämpfer, 17th century)
• Crickets and frogs in South India



Types of Synchronization in Complex Processes

- phase synchronization

(Rosenblum, Pikovsky, Kurths, 1996)

phase difference bounded, a zero Lyapunov
exponent becomes negative (phase-coherent)

- generalized synchronization

(Abarbanel et al., 1995)

a positive Lyapunov exponent becomes negative, 
amplitudes and phases interrelated

- complete synchronization (Fujisaka, 1984)



Necessary Conditions for Synchronization

• Two Oscillators (or more; best: self-sustaining)
• Coupling: Master – Slave, or mutually coupled
• Starting: (slightly) different systems

(initial conditions, internal frequencies)
• Goal: becoming identical in a main property or

sharing some important behaviour due to 
forcing or interaction
(becoming identical, adjusting their phases…)



Phase Synchronization in Complex Systems

Most systems not simply periodic
Synchronization in complex (non-periodic) 

systems

Interest in Phase Synchronization

How to retrieve a phase in complex dynamics?



Phase Definitions in Coherent Systems

Rössler Oscillator – 2D Projection

Phase-coherent (projection looks like a smeared limit
cycle, low diffusion of phase dynamics)



Phase dynamics in periodic systems

• Linear increase of the phase
φ (t) =  t  ω

ω = 2 Π / T – frequency of the periodic dynamics
T – period length

φ (t) increases 2 Π per period

d φ (t) / d t  = ω



Phase Definitions

Analytic Signal Representation (Hilbert Transform)

Direct phase

Phase from Poincare´ plot

(Rosenblum, Pikovsky, Kurths, Phys. Rev. Lett., 1996)



Hilbert transform for periodic signals



Hilbert transform for chaotic signals



Phase for coherent chaotic oscillators

Phase dynamics and phase synchronization phenomena very similar in 
periodic and phase-coherent chaotic systems,

e.g. one zero Lyapunov exponent becomes negative



Synchronization due to periodic driving



Synchronization due to periodic driving



Understanding synchronization by means of 
unstable periodic orbits

Phase-locking regions for periodic orbits with periods 1-5; 
overlapping region – region of full phase synchronization
(dark,  = natural frequency of chaotic system – ext force)



Synchronization of two coupled non-identical
chaotic oscillators

Phases are synchronized BUT     Amplitudes almost
uncorrelated



Two coupled non-identical oscillators

Equation for the slow phase θ:

Averaging yields (Adler-like equation, phase oscillator):   



Synchronization threshold

Fixed point solution (by neglecting amplitude fluctuations)

Fixed point stable (synchronization) if coupling
is larger than



Applications in various fields

Lab experiments:

• Electronic circuits (Parlitz, Lakshmanan, Dana...)
• Plasma tubes (Rosa)
• Driven or coupled lasers (Roy, Arecchi...)
• Electrochemistry (Hudson, Gaspar, Parmananda...)
• Controlling (Pisarchik, Belykh)
• Convection (Maza...)
Natural systems:

• Cardio-respiratory system (Nature, 1998...)
• Parkinson (PRL, 1998...)
• Epilepsy (Lehnertz...)
• Kidney (Mosekilde...)
• Population dynamics (Blasius, Stone)
• Cognition (PRE, 2005)
• Climate (GRL, 2005)
• Tennis (Palut)



Cardio-respiratory System

Analysis technique: Synchrogram



Schäfer, Rosenblum, Abel, Kurths: Nature, 1998



Synchronization in more complex topology

• Systems are often non-phase-coherent
(e.g. funnel attractor – much stronger phase
diffusion)

• How to study phase dynamics there?
• 1st Concept:    Curvature

(Osipov, Hu, Zhou, Ivanchenko, Kurths: 
Phys. Rev. Lett., 2003)



Roessler Funnel – Non-Phase coherent



Phase basing on curvature



Dynamics in non-phase-coherent oscillators



Washington Post 
19. April 1955

Warum gerade 
Albert Einstein?



Explanation of Brownian motion

• A. Einstein: Über die von der 
molekularkinetischen Theorie 
der Wärme geforderte 
Bewegung von in ruhenden 
Flüssigkeiten suspendierten 
Teilchen                       
(Annalen der Physik 4. Folge, 
Band 17, 1905, Seite 549-
560)



Results
1) Mean squared movement of the particles after a 

time t: 
<∆ x² > ~ T t / ( ή r ) ~ t

T – temperature, ή – viscosity of the fluid, 
r – radius of the particles
„Die mittlere Verschiebung ist also proportional der 

Quadratwurzel aus der Zeit“ (Einstein)
Hence, variance is not a constant, but increases
with time!!!

2) Diffusion process with D = <∆ x² > / ( 2 t )
3) estimation of the number of the molecules in the

fluid





Three types of transition to phase synchronization

• Phase-coherent: one zero Lyapunov exponent becomes
negative (small phase diffusion); phase synchronization to get
for rather weak coupling, whereas generalized
synchronization needs stronger one

• Weakly non-phase-coherent: inverse interior crises-like
• Strongly non-phase-coherent: one positive Lyapunov

exponent becomes negative (strong phase diffusion) – also 
amplitudes are interrelated



Application: El Niño vs. Indian monsoon

• El Niño/Southern Oscillation (ENSO) – self-
sustained oscillations of the tropical Pacific coupled
ocean-atmosphere system

• Monsoon - oscillations driven by the annual cycle of 
the land vs. Sea surface temperature gradient

• ENSO could influence the amplitude of Monsoon –
Is there phase coherence?

• Monsoon failure coincides with El Niño

• (Maraun, Kurths, Geophys Res Lett (32, 15709, 
2005))



El Niño vs. Indian Monsoon



El Niño – non phase-coherent



Phase coherence between El Niño and Indian monsoon



Concept of Recurrence

• Curvature new theoretical insights and 
also applications, but sometimes problems
with noisy data

• Other concept is necessary:

Recurrence



What is CHAOS?

• Henri Poincaré (1854-1912)

Mathematical price to celebrate the 60th birthday of  Oskar II, king of  
Norway and Sweden, 1889:

„Is the solar system stable?“



H. Poincare

If  we knew exactly the laws of nature and the situation of the universe at the 
initial moment, we could predict exactly the situation of that same universe at 
the succeeding moment. 

but even if it were the case that the natural laws had no longer any secret for us, we could still only 
know the initial situation approximately. If that enabled us to predict the succeeding situation with 
the same approximation, that is all we require, and we should say that the phenomenon had been 
predicted, that it is governed by laws. 

But it is not always so; it may happen that small differences in the initial 
conditions produce very great ones in the final phenomena. A small error in 
the former will produce an enormous error in the latter. Prediction becomes 
impossible, and we have the fortuitous phenomenon.

(1903 essay: Science and Method)

Weak Causality



Concept of Recurrence

Recurrence theorem: 

Suppose that a point P in phase space is covered by a conservative
system. Then there will be trajectories which traverse a small
surrounding of P infinitely often.
That is to say, in some future time the system will return arbitrarily
close to its initial situation and will do so infinitely often.

(Poincare, 1885)



Poincaré‘s Recurrence

Arnold‘s cat map

Crutchfield 1986, 
Scientific American



Recurrence plot analysis

• Recurrence plot
R( i , j ) = Θ( ε - |x(i) – x(j)| )

Θ – Heaviside function
ε – threshold for neighborhood (recurrence to   

it) - (Eckmann et al., 1987

Generalization:
Statistical properties of all side diagonals

Measures of complexity (2002...)



predictable
long diagonals

unpredictable
short diagonals

Predictability
Long diagonals

Unpredictability
Short diagonals

Sine                     Rössler oscillator white noise



Distribution of the Diagonals
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Probability of recurrence after a certain time

• Generalized auto (cross) correlation function

(Romano, Thiel, Kurths, Kiss, Hudson 
Europhys. Lett. 71, 466 (2005) )



Recurrence Rate Roessler (phase coherent)



Two coupled Roessler oscillators - Non-synchronized



Two coupled Roessler oscillators - Phase-synchronized



Roessler Funnel – Non-Phase coherent



Two coupled Funnel Roessler oscillators - Non-synchronized



Two coupled Funnel Roessler oscillators – Phase and General 
synchronized



Cross-Synchronization Analysis

Cross-Phase-Recurrence



Analysis of Generalized Synchronization

JPR - Joint probability of recurrence

S(τ) - Similarity function between x and y 
with time lag

RR – average probability of recurrence



Phase and generalized synchronization analysis



Generalizations and Applications

Extension to chains, lattices and multivariate data

Applications:
•electrochemical experiments

•Eye movement during visual perception



The Great Wave by Katsushika Hokusai (1760-1850)



The Great Wave by Katsushika Hokusai (1760-1850)

(from: Buswell 1935)



Eyes directed to one point  Mikrosaccades



Results:

- Fixational movements of the left and   
right eye are phase synchronized

- Hypothesis: there might be one center
only in the brain that produces the
fixational movement in both eyes



Synchronization

Take home messages:

• Synchronization is not a state but a process
of adjusting rhythms due to interaction.

• When subsystems (e.g. people, animals, cells, 
neurons) synchronize, they also can
communicate.
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