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Synchronization

Greek origin:

20y ¥Q0Vvog — sharing a common
property in time
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Nonlinear Sciences

Start in 1665 by Christiaan Huygens:

Discovery of phase synchronization,
called sympathy



Huygens -Experiment
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Pendulum Clocks

* Christiaan Huygens:

Pendelum clocks hanging at the same
wooden beam (half-timber house)

It 1s quite worth noting that when we suspended two clocks
so constructed from two hooks imbedded in the same
wooden beam, the motions of each pendulum in opposite
swings were so much in agreement that they never receded
the last bit from each other...Further, if this agreement was
disturbed by some interference, it reastablished itself in a
short time...after a careful examination I finally found that
the cause of this 1s due to the motion of the beam, even

though this 1s hardly perceptible (Huygens, 1673)



Modern Example: Mechanics

London’s Millenium Bridge

- pedestrian bridge
- 325 m steel bridge over the Themse

- Connects city near St. Paul’s Cathedral with Tate
Modern Gallery

Big opening event in 2000 -- movie



Bridge Opening

* Unstable modes always there
* Mostly only 1n vertical direction considered

» Here: extremely strong unstable lateral
Mode — If there are sufficient many people
on the bridge we are beyond a threshold and
synchronization sets in

(Kuramoto-Synchronizations-Transition,
book of Kuramoto in 1984)




Supplemental tuned mass dampers to reduce the oscillations

rrri
ol

TCEEE

unlﬁé Vikration Control Systems.

GERB Schwingungsisolierungen GmbH, Berlin/Essen



Examples: Sociology, Biology, Acoustics, Mechanics

* Hand clapping (common rhythm)
* Ensemble of doves (wings in synchrony)
* Mexican wave

* Menstruation (e.g. female students living in one
room in a dormitory)

* Organ pipes standing side by side — quenching or

playing in unison (Lord Rayleigh, 19th century)
 Firetlies in south east Asia (Kampfer, 17th century)
* Crickets and frogs in South India



Types of Synchronization in Complex Processes

- phase synchronization
(Rosenblum, Pikovsky, Kurths, 1996)

phase difference bounded, a zero Lyapunov
exponent becomes negative (phase-coherent)

- generalized synchronization

(Abarbanel et al., 1995)

a positive Lyapunov exponent becomes negative,
amplitudes and phases interrelated

- complete synchronization (Fujisaka, 1984)



Necessary Conditions for Synchronization

Two Oscillators (or more; best: self-sustaining)
Coupling: Master — Slave, or mutually coupled
Starting: (slightly) different systems

(initial conditions, internal frequencies)

Goal: becoming identical in a main property or
sharing some important behaviour due to
forcing or interaction

(becoming identical, adjusting their phases...)



Phase Synchronization in Complex Systems

Most systems not simply periodic

=» Synchronization in complex (non-periodic)
systems

Interest in Phase Synchronization

How to retrieve a phase in complex dynamics?



Phase Definitions in Coherent Systems

Rossler Oscillator — 2D Projection

Phase-coherent (projection looks like a smeared limit
cycle, low diffusion of phase dynamics)

[}



Phase dynamics in periodic systems

* Linear increase of the phase

vt =t w

w = 211 / T — frequency of the periodic dynamics
T — period length

=> o (1) increases 2 I1 per period

do@®)/dt =w



Phase Definitions

Analytic Signal Representation (Hilbert Transform)

W(t)=s(t)+js(t) = A(t)e

1 (7
f,-'(r)z—P.a-ﬂ/ ——ds

Direct phase |
¢(1) = arctan ( y(1)/x(1))

Phase from Poincare” plot

. f — Tg
d(t)=2nk + 2n

(T <1< Tpp1)
Tkl — Tk

(Rosenblum, Pikovsky, Kurths, Phys. Rev. Lett., 1996)



Hilbert transform for periodic signals
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Hilbert transform for chaotic signals
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Phase for coherent chaotic oscillators

20 - . : 300 —— ,
5 | —
10 + 1 r ‘ [ ‘ \ - Py #_‘_,a—_.-*-"_""#ﬁw‘ ]
200 f B 1
| ﬂn I1||| ‘||H || ‘| ,1|‘“]] @ 50, - -
x 0 ll|” || il |||||H |||||‘ | ‘ u"||||||| H. @ 5
] "\'Ml a
| |‘ J“ “ | | l|| J||.| 100 F _
—20 . : . 0 . 1 .
0 100 200 0 100 200
(a) time (b) time

Fig. 3.3. (a) Chaotic signal x(7) of the chaotic Réssler oscillator. (b) Phase of the chaotic signal. Solid line: phase of
Eq. (3.5); dashed line: phase of Eq. (3.7); and dotted line: phase of Eq. (3.8).

Phase dynamics and phase synchronization phenomena very similar in
periodic and phase-coherent chaotic systems,
¢.g. one zero Lyapunov exponent becomes negative



Synchronization due to periodic driving

X=—my—z+ Esin(£2,t1)
y=wx+ay,

Z=f+z(x —c)

0.20

0.98 1.00 1.02



Synchronization due to periodic driving
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Fig. 3.5. Stroboscopic plot of the Réssler system state (x,y) (filled cycles) at each period of the driving signal
(Eq. (3.4)). The dotted background is the unforced chaotic attractor. (a) E = 0.15, £, = 1.0, phase is synchronized.
(b) E=0.15, £ = 1.02, phase is not synchronized.



Understanding synchronization by means of

unstable periodic orbits
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Phase-locking regions for periodic orbits with periods 1-5;
overlapping region — region of full phase synchronization
(dark, = natural frequency of chaotic system — ext force)



Synchronization of two coupled non-identical

chaotic oscillators

X120=—Wi2y1.2 — 212+ Clx21 — x1.2) ,
.i’Lz = (1,2X1,2 T AV1,2 »

Z12=f +z12(x12 —¢),
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Phases are synchronized BUT Amplitudes almost
uncorrelated



Two coupled non-identical oscillators

¢ = arctan (y/x), A= x>+ y)'?,

we get
. . . — . e 3y
Air=ad s Q2 —Z12cos P2+ C(Ar 1 cospacos P —Aj2¢c08@1a),
P, =12+ asin @y cos P+ 212/A1 2810 Py »
—C(A4> /A1 2c0o8¢hy 1 SiNh 2 — coshyasind o),
; . T . . T

Zio=J) —cZ12+ A12212c08 P12 .

Equation for the slow phase 0: br.2 = wot + 02,

Averaging yields (Adler-like equation, phase oscillator):

d . C (4, Ay\ . .
— (0 — 0 y=2A00 — — | =+ — | sin(F, — O
dr{ 1 2 ) 5 (fll —|—AE)H () 5 )



Synchronization threshold

Fixed point solution (by neglecting amplitude fluctuations)

4AmA 1:’12
C(A7 + 43)

#, — 6, = arcsin

Fixed point stable (synchronization) if coupling
1s larger than

Cps = 4AmA 14>/ (A3 + A3).



Applications in various fields

Lab experiments:

e Electronic circuits (Parlitz, .akshmanan, Dana...)
e Plasma tubes (Rosa)

* Driven or coupled lasers (Roy, Arecchi...)

e Electrochemistry (Hudson, Gaspar, Parmananda...)
* Controlling (Pisarchik, Belykh)

* Convection (Maza...)

Natural systems:

* Cardio-respiratory system (Nature, 1998...)

e Parkinson (PRL, 1998...)

* Epilepsy (Lehnertz...)

* Kidney (Mosekilde...)

* Population dynamics (Blasius, Stone)

e Cognition (PRE, 2005)

e Climate (GRL, 2005)

* Tennis (Palut)



Cardio-respiratory System
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FIG. 1. Shert segments of an electrocardiogram with the R peaks marked (a) and of a respiratory signal (b); both signals are in arbifrary
units.

Analysis technique: Synchrogram
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Synchronization in more complex topology

* Systems are often non-phase-coherent
(e.g. tunnel attractor — much stronger phase

diffusion)
* How to study phase dynamics there?

* Ist Concept: Curvature

(Osipov, Hu, Zhou, Ivanchenko, Kurths:
Phys. Rev. Lett., 2003)
7

¢ = arctan —.
T



Roessler Funnel — Non-Phase coherent
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Phase basing on curvature

curve 7, = (u, v) the angle velocity at each point is

ds
v=—/R,
dt’

where

ds/dt = V2 + 1?2
is the speed along the curve and
R = (i + 0%)¥2 /v — i

is the radius of the curvature. If R > 0 at each point, then

do  vih — D

V=== . .o
dt e 4+ 02

is always positive and therefore the variable ¢ defined as

| v
@ = | vdt = arctan —,
. (s



Dynamics in non-phase-coherent oscillators

I T T =
T T

FIG. 1: Upper panel (a,b,c): projections of the attractors of
the Rissler systems (1) onto the plane (x,y); middle panel:
(d,e,f): projections onto (&, y); lower panel (g,h,i): distribu-
tion of the return times 7'. The parameters are w = 0.98 and
a =0.16 (a,d.g), a = 0.22 (b,e,h) and a = 0.28 (c,f,i).



Washington Post
19. April 1955

Wa_ruin gerade
- Albert Einstein?




I Explanation of Brownian motion "

» A. Einstein: Uber die von der
molekularkinetischen Theorie
der Warme geforderte
Bewegung von in ruhenden
Flussigkeiten suspendierten
Teilchen
(Annalen der Physik 4. Folge,
Band 17, 1905, Seite 549-
560)




1) Mean squared movement of the particles after a
time t:

<AX*>~Tt/(Qr)~t
T — temperature, 1 — viscosity of the fluid,

r — radius of the particles

,,D1e mittlere Verschiebung ist also proportional der
Quadratwurzel aus der Zeit* (Einstein)

Hence, variance 1s not a constant, but increases
with time!!!
2) Diffusion process with D =<A x*>/(21)

3) estimation of the number of the molecules in the
fluid
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FIG. 2: Phase diffusion coeflicient Dy (3) vs a. w = 098,



Three types of transition to phase synchronization

* Phase-coherent: one zero Lyapunov exponent becomes
negative (small phase diffusion); phase synchronization to get
for rather weak coupling, whereas generalized
synchronization needs stronger one

* Weakly non-phase-coherent: inverse interior crises-like

* Strongly non-phase-coherent: one positive Lyapunov
exponent becomes negative (strong phase diffusion) — also
amplitudes are interrelated



Application: El Nifo vs. Indian monsoon

 El Nifio/Southern Oscillation (ENSO) — self-
sustained oscillations of the tropical Pacific coupled
ocean-atmosphere system

* Monsoon - oscillations driven by the annual cycle of
the land vs. Sea surface temperature gradient

* ENSO could influence the amplitude of Monsoon —
Is there phase coherence?

e Monsoon failure coincides with El Nino

* (Maraun, Kurths, Geophys Res Lett (32, 15709,
2005))



El Nino vs. Indian Monsoon
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Figure 1. Section of the NINO3 (upper graph) and AIR
anomalies (lower graph) time series. The dotted lines de-
pict the raw data, the solid lines show the low-pass
filtered data used for the further analysis.



El Nifio — non phase-coherent
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Figure 2. (a) Embedding of low-pass filtered NINO3
time series by Hilbert transformation. Many oscillations
are not centered around a common center. (b) The same,
but for the time derivative of the NINO3 time series. All
pronounced oscillations circle around the origin.



Phase coherence between El Nino and Indian monsoon
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Figure 5. Phase difference of ENSO and Monsoon
(black). Grey shading marks intervals of jointly well de-
fined phases. 1886-1908 and 1964-1980 (I): plateaus in-
dicate phase coherence. 1908-1921, 1935-1943 and 1981-
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exhibit distinct oscillations (NINO3 time series, upper
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diative forcing index (VRF).



Concept of Recurrence

e Curvature =» new theoretical insights and
also applications, but sometimes problems
with noisy data

* Other concept 1s necessary:

Recurrence



What is CHAOS?

Mathematical price to celebrate the 60th birthday of Oskar II, king of
Norway and Sweden, 1889:

,,1S the solar system stable?*

SUR LE

*  Henri Poincaré (1854-1912) PROBLEME-DES TROISAGORES

ET LES

EQUATIONS DE LA DYNAMIQUE

H. POINCARE
& PARIS

MEMOIRE COURONNE
DU PRIX DE 8 M, LE ROI OSCAR IT

AVEC DES NOTES




H. Poincare

If we knew exactly the laws of nature and the situation of the universe at the
initial moment, we could predict exactly the situation of that same universe at
the succeeding moment.

but even if it were the case that the natural laws had no longer any secret for us, we could still only
know the initial situation approximately. If that enabled us to predict the succeeding situation with
the same approximation, that is all we require, and we should say that the phenomenon had been
predicted, that it 1s governed by laws.

But it is not always so; it may happen that small differences in the initial
conditions produce very great ones in the final phenomena. A small error in
the former will produce an enormous error in the latter. Prediction becomes
impossible, and we have the fortuitous phenomenon.

(1903 essay: Science and Method)

Weak Causality



Concept of Recurrence

Recurrence theorem:

Suppose that a point P in phase space is covered by a conservative
system. Then there will be trajectories which traverse a small
surrounding of P infinitely often.

That 1s to say, in some future time the system will return arbitrarily
close to its 1nitial situation and will do so infinitely often.

(Poincare, 1885)



Poincaré‘s Recurrence

Arnold’s cat map

Crutchfield 1986,
Scientific American




Recurrence plot analysis

* Recurrence plot

R(1,7)=0O(e- |x®)-x()| )

® — Heaviside function

e — threshold for neighborhood (recurrence to
it) - (Eckmann et al.; 1987

Generalization:
Statistical properties of all side diagonals

=» Measures of complexity (2002...)



Sine Rossler oscillator white noise
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Distribution of the Diagonals

P.(I)~ & exp(—=2K,I)

The following parameters can be estimated by means of RPs
(Thiel, Romano, Kurths, CHAOS, 2004):

. X ] e
Correlation K,(e,l) = _111( e z H Rt+m,s+mj

Entropy: |

Correlation D (e,1)=1In P, (1) €
Dimension: R P...() g+ Ag

N N
Mutual |2(g, z') = -9 1n|:% Z Ri,j :| 2 ln|:$ Z Ri,j Ri+r,j+r:|

Information:



Probability of recurrence after a certain time

* Generalized auto (cross) correlation function

(Romano, Thiel, Kurths, Kiss, Hudson
Europhys. Lett. 71, 466 (2005) )



Recurrence Rate Roessler (phase coherent)
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Two coupled Roessler oscillators - Non-synchronized
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Two coupled Roessler oscillatots - Phase-synchronized
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Roessler Funnel — Non-Phase coherent
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Two coupled Funnel Roessler oscillators - Non-synchronized
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coupled Funnel Roessler oscillators — Phase and General

synchronized
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Cross-Synchronization Analysis

Cross-Phase-Recurrence

CPR = (Pi(T) 5(T))/(102)



Analysis of Generalized Synchronization

JPR - Joint probability of recurrence

S(t)— RR

JPR = ms ‘
max [ BE

RR — average probability of recurrence

S(7) - Similarity function between x and y
with time lag

N . P .
5T D, Oa—llmi—z; )0y, —|1Yitr —yj4- )

RR

S(T) =



Phase and generalized synchronization analysis
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Fig. 2 — CPR index, JPR index and A2 and A4 as functions of the coupling strength p for two
mutually coupled Réssler systems in phase-coherent regime (a.c.e) and in funnel regime (b.,d.,f). The
dotted zero line in (e) and (f) is plotted to guide the eye. Here, we choose ¢ corresponding to 10%
recurrence points in each RP.



Generalizations and Applications

Extension to chains, lattices and multivariate data

Applications:
clectrochemical experiments

*Eye movement during visual perception
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Results:

- Fixational movements of the left and
right eye are phase synchronized

- Hypothesis: there might be one center
only in the brain that produces the
fixational movement in both eyes



Svnchronization

Take home messages:

* Synchronization is not a state but a process
of adjusting rhythms due to interaction.

* When subsystems (e.g. people, animals, cells,
neurons) synchronize, they also can
communicate.
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Recurrence plots for the analysis of complex systems
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Abstract

Recurrence is a fundamental property of dynamical svsiems, which can be exploited to characterise the sysiem’s behaviour in
phase space. A powerful tool for their visualisation and analysis called recurrence plot was introduced in the late 1980°s. This report
is 4 comprehensive overview covering recurrence based methods and their applications with an emphasis on recent developments.
After a brief outline of the theory of recurrences, the basic idea of the recurrence plot with its variations is presented. This includes the
quantification of recurrence plots, like the recurrence quantification analysis, which is highly effective to detect, e. g., transitions in the
dynamics of systems from time series. A main point is how to link recurrences to dynamical invariants and unstable periodic orbits.
This and further evidence suggest that recurrences contain all relevant information about a system’s behaviour. As the respective
phase spaces of two svstems change due to coupling, recurrence plots allow studying and quantifying their interaction. This fact
also provides us with a sensitive tool for the study of synchronisation of complex systems. In the last part of the report several
applications of recurrence plots in economy, physiology, neuroscience, earth sciences, astrophysics and engineering are shown. The
aim of this work is to provide the readers with the know how for the application of recurrence plot based methods in their own field
of research. We therefore detail the analysis of data and indicate possible difficulties and pitfalls.
© 2006 Elsevier B.V. All rights reserved.
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