

1864-26

Ninth Workshop on Non-linear Dynamics and Earthquake Predictions

1 - 13 October 2007

Synchronization in Complex Networks

Jurgen Kurths

University Potsdam Center for Dynamics of Complex Systems & Institute of Physics Potsdam, Germany

Synchronization in Complex Networks

Jürgen Kurths¹, C. Hilgetag³, A. Motter², G. Zamora¹, L. Zemanova¹, C. S. Zhou¹

¹University Potsdam, Center for Dynamics of Complex Systems (DYCOS), Germany ² Northwestern University, Evanston, USA ³ Jacobs University Bremen, Germany

http://www.agnld.uni-potsdam.de/~juergen/juergen.html Toolbox TOCSY

Outline

- Introduction
- Complete synchronization in complex networks
- Hierarchical (clustered) transitions to complex synchronization in complex networks
- Structure vs. functionality in complex brain networks – network of networks
- Conclusions

Synchronization in ensembles of active subsystems: Biology

- Ensemble of doves (wings in synchrony)
- Menstruation (e.g. female students living in one room in a dormitory)
- Collective firing of neurons cause of any action of animals having neurons
- Fireflies, crickets, frogs in Asia (India, Vietnam...)

Basic Model in Statistical Physics and Nonlinear Sciences for ensembles

• Traditional Approach: Regular chain or lattice of coupled oscillators; global or nearest neighbour coupling

Synchronization in spatially extended systems

$$
\dot{x}_n = -\omega_n y_n - z_n \; ,
$$

$$
\dot{y}_n = \omega_n x_n + a y_n + \epsilon (y_{n+1} - 2 y_n + y_{n-1})
$$

$$
\dot{z}_n = 0.4 + (x_n - 8.5)z_n \; .
$$

Soft transition to phase synchronization

Fig. 6.3. Soft transition to global synchronization in a chain of Rössler oscillators (6.24). Mean frequencies Ω_n for different values of coupling ϵ . The parameters are: $N = 20$, the frequency mismatch $\delta = 2 \times 10^{-4}$ and $\omega_1 = 1$.

Hard transition to PS

Fig. 6.5. Hard transition to global synchronization in a chain of Rössler oscillators (Eq. (6.24)). Mean frequencies Ω_n for different values of coupling ϵ . The parameters are: $N = 50$, the frequency mismatch $\delta = 9 \$

Fig. 6.7. Mean frequencies Ω_n and space-time plots in a chain of 50 coupled Rössler oscillators with a frequency mismatch $\delta = 9 \times 10^{-3}$ and coupling $\epsilon = 0.18$. All plots show a gray-scale representation of correspon are represented by white and maximal by black.

Networks with complex topology Networks with Complex Topology

- Random graphs/networks (Erdös, Renyi, 1959) • Small-world networks (Watts, Strogatz, 1998)
- Scale-free networks (Barabasi, Albert, 1999)

•

- Applications: neuroscience, cell biology, epidemic spreading, internet, traffic, systems biology
- Many participants (nodes) with complex interactions and **complex dynamics at the nodes**

Biological Networks

Ecological Webs

Neural Networks

Protein interaction

Genetic Networks

Metabolic Networks

Scale-freee Networks

Network resiliance

- Highly robust against random failure of a node
- Highly vulnerable to deliberate attacks on **hubs**

Applications

• **Immunization** in networks of computers, humans, ...

Synchronization in such networks

- Synchronization properties strongly influenced by the network´s structure (Jost/Joy, Barahona/Pecora, Nishikawa/Lai, Timme et al., Hasler/Belykh(s) etc.)
- Self-organized synchronized clusters can be formed (Jalan/Amritkar)
- Previous works mainly focused on the influence of the connection´s topology (assuming coupling strength uniform)

Universality in the synchronization of weighted random networks

Our intention:

Include the influence of weighted coupling for complete synchronization

(Motter, Zhou, Kurths: Phys. Rev. Lett., 96, 034101, 2006)

Weighted Network of N Identical Oscillators

$$
\dot{\mathbf{x}}_i = \mathbf{F}(\mathbf{x}_i) + \sigma \sum_{j=1}^N W_{ij} A_{ij} [\mathbf{H}(\mathbf{x}_j) - \mathbf{H}(\mathbf{x}_i)],
$$

$$
= \mathbf{F}(\mathbf{x}_i) - \sigma \sum_{j=1}^N G_{ij} \mathbf{H}(\mathbf{x}_j), \quad i = 1, ..., N,
$$

F – dynamics of each oscillator

- H output function
- G coupling matrix combining adjacency A and weight W

 $G_{ij} = -W_{ij}$ for $i \neq j$ $G_{ii} = \sum_j W_{ij} A_{ij} = S_i$

intensity of node i (includes topology and weights)

General Condition for Synchronizability

Stability of synchronized state

$$
\{{\bf x}_i = {\bf s}, \forall i | \dot{{\bf s}} = {\bf F}({\bf s})\}
$$

N eigenmodes of

$$
\dot{\xi_i} = [D\bar{\mathbf{F}}(\mathbf{s}) - \sigma \lambda_i D\bar{\mathbf{H}}(\mathbf{s})]\xi_i,
$$

 λ_i *i*th eigenvalue of G

Cost involved in the network's coupling Cost = total input strength of the connections of all nodes at the synchronization threshold $\sigma_{\min} \equiv \epsilon_1/\lambda_2$ $C = \sigma_{\min} \sum_{i,j} W_{ij} A_{ij} = \sigma_{\min} \sum_{i=1}^{N} S_i$ Normalized cost $C_0 \equiv C/(N\epsilon_1) = \Omega/\lambda_2$ $\Omega = \sum_{i=1}^{N} S_i / N$ Mean Intensity

Main result for general weighted random networks

$$
R = A_R \frac{S_{\text{max}}}{S_{\text{min}}} R_H(K), \ \ C_0 = A_C \frac{\Omega}{S_{\text{min}}} C_H(K)
$$

Distribution of eigenvalues in large random networks leads then to:

$$
R \approx R_H(K) \equiv \frac{1 + 2/\sqrt{K}}{1 - 2/\sqrt{K}}
$$

$$
C_0 \approx C_H(K) \equiv \frac{1}{1 - 2/\sqrt{K}}
$$

Main results

Synchronizability universally determined by:

- mean degree K and
- heterogeneity of the intensities

- minimum/ maximum intensities

Hierarchical Organization of Synchronization in Complex Networks

Homogeneous (constant number of connections in each node)

vs.

Scale-free networks

$$
\dot{\mathbf{x}}_j = \tau_j \mathbf{F}(\mathbf{x}_j) + \frac{g}{K} \sum_{i=1}^N A_{ji} (\mathbf{x}_i - \mathbf{x}_j)
$$

Zhou, Kurths: CHAOS (focus issue: 16, 015104 (2006))

FIG. 1: Chaotic attractors of the Rössler oscillator in the phase coherent regime (a) and phase non-coherent regime (b).

$$
\dot{x} = -0.97x - z,\n\dot{y} = 0.97x + ay,\n\dot{z} = x(z - 8.5) + 0.4,
$$

Identical oscillators

FIG. 3: Transition to CS in the SFN and the HN, indicated by the synchronization error E (squares) and the amplitude A_X of the mean field X (circles). The filled symbols are for the SFNs and the open symbols for the HNs. (a) Phase coherent oscillations at $a = 0.15$. (b) Phase non-coherent oscillations at $a = 0.25$. In both networks, $N = 1000$ and $K = 10$.

Transition to synchronization

FIG. 4: Synchronization difference ΔX_i of the oscillators with respect to the global mean field X in the SFN (solid line) and HN (dotted line). The symbol (o) denotes the degree k_i of the nodes. Note the log-log scales of the plots. (a) When the coupling strength is weak $(g = 0.1)$ and (b) when the synchronized state $(g = 0.5)$ is perturbed by noise $(D = 0.5)$. Here the oscillations are phase non-coherent at $a = 0.25$ and the behavior is very similar for phase coherent oscillations at $a = 0.15.$ $\Delta X_j = \langle |x_j - X| \rangle_t$

FIG. 5: The average values $\Delta X(k)$ as a function of k at various coupling strength g in the SFN. (a) Phase coherent regime $a = 0.15$. (b) phase non-coherent regime $a = 0.25$. The solid line with $\text{slop} - 1$ is plotted for reference.

$$
\Delta X(k) \sim k^{-\alpha}
$$

 $\alpha \approx 1$

 $\Delta X(k) = \frac{1}{N_k} \sum_{k,j=k} \Delta X_j$

Mean-field approximation

$$
\dot{\mathbf{x}}_j = \tau_j \mathbf{F}(\mathbf{x}_j) + \frac{g k_j}{K} (\mathbf{X} - \mathbf{x}_j), \quad k_j \gg 1.
$$

Each oscillator forced by a common signal Coupling strength \sim degree

$$
\frac{d}{dt}\Delta X(k) = \Lambda(k)\Delta X(k) + c.
$$

For nodes with rather large degree

→ Scaling:
$$
\Delta X(k) \sim k^{-1}
$$
,

Clusters of synchronization

 $\Delta X_{ij} = \langle |x_i - x_j| \rangle_t$

$$
\Delta X_{ij} \leq \Delta_{th}
$$

FIG. 7: The effective synchronization clusters in the synchronized network in the presence of noise ($a = 0.25$, $q = 0.5$, and $D = 0.5$, represented simultaneously in the index space (i, j) (a, b) and in the degree space (k_i, k_j) (c, d). A dot is plotted when $\Delta X_{ij} \leq \Delta_{th}$. (a) and (c) for the threshold value $\Delta_{th} = 0.25$, and (b) and (d) for $\Delta_{th} = 0.50$. The solid lines in (a) and (b) denote $i + j = J_{th}$ and are also plotted in (c) and (d) correspondingly. Note the different scales in (a) and (b) and the $log-log$ scales in (c) and (d).

Non-identical oscillators

 \rightarrow phase synchronization

FIG. 11: The mean oscillation frequencies Ω_j of the oscillators in the SFN (a) and the HN (b) at the coupling strength $g =$ $0.13.$

Transition to synchronization in complex networks

- Hierarchical transition to synchronization via clustering
- Hubs are the "engines" in cluster formation AND they become synchronized first among themselves

Cat Cerebal Cortex

Fig. 2. Connectivity matrix representing connections between 53 cortical areas of cat brain.

Hierarchical organization in complex brain networks

- a) Connection matrix of the cortical network of the cat brain (anatomical)
- b) Small world sub-network to model each node in the network (200 nodes each, FitzHugh Nagumo neuron models - excitable)

Î**Network of networks**

Phys Rev Lett 97 (2006), Physica D 224 (2006), New J. Phys. 9, 178 (2007)

Model for neuron i in area I

$$
\epsilon \dot{x}_{I,i} = f(x_{I,i}) + \frac{g_1}{k_a} \sum_{j}^{N_a} M_I^L(i,j)(x_{I,j} - x_{I,i}) + \frac{g_2}{\langle w \rangle} \sum_{J}^{N} M^C(I,J) L_{I,J}(i)(\bar{x}_J - x_{I,i}),
$$

$$
\dot{y}_{I,i} = x_{I,i} + a_{I,i} + D\xi_{I,i}(t),
$$

 $% \left\vert \mathcal{L}_{\mathcal{A}}\right\vert$ where

$$
f(x_{I,i}) = x_{I,i} - \frac{x_{I,i}^3}{3} - y_{I,i}.
$$

FHN model

Transition to synchronized firing

g – coupling strength – control parameter

FIG. 2: Mean activity X of one area at various couplings (a) $g = 0.06$, (b) $g = 0.082$ (c) $g = 0.09$. The average correlation coefficient $\langle R \rangle = \frac{1}{N(N-1)} \sum_{I \neq J}^{N} R(I, J)$ $(N = 53)$ vs. g.

Network topology vs. Functional organization in networks

Figure 7. Correlation matrices R_{IJ} at weak coupling $g = 0.07$ (a) and strong coupling $g = 0.12$ (b).

Weak-coupling dynamics \rightarrow non-trivial organization

 \rightarrow relationship to underlying network topology

Figure 13. Typical hierarchical tree of the dynamical clusters in the weak coupling regime (a) $g = 0.07$, transient regime (b) $g = 0.082$ and strong coupling regime (c) $g = 0.12$.

Figure 14. Four major dynamical clusters (o) with weak coupling strength $g = 0.07$, compared to the underlying anatomical connections (\cdot).

Intermediate Coupling

Intermediate Coupling:

3 main dynamical clusters

Summary - Take Home Messages

- There are rich synchronization phenomena in complex networks (**self-organized structure formation**) – hierarchical transitions
- This approach seems to be promising for modelling and understanding of some aspects of **brain dynamics** (e.g. cognition) but also **metabolic networks** etc.

Our papers on complex networks

Europhys. Lett. 69, 334 (2005) Phys. Rev. E 71, 016116 (2005) CHAOS 16, 015104 (2006) Physica D 224, 202 (2006) Phys: Rev. Lett. 96, 034101 (2006) Phys. Rev. Lett. 96, 164102 (2006) Phys. Rev. Lett. 96, 208103 (2006) Phys. Rev. Lett. 97, 238103 (2006) New J. Physics 9, 178 (2007)

